

Arduino Guide and Project book

Arduino Guide and Project Book

Tyson Popynick

Prot3us1@gmail.com

1 Title

© Tyson Popynick 2016 for Aus Electronics Direct

About the Arduino
The Arduino is a development board based on the ATMega

microprocessors. It is fairly powerful as far as processors

go, and suits most hobby purposes.

There are multiple versions of the Arduino, including the

Micro, Uno, Mega, Teensy and Zero. There are also plenty

of other variants out there but these are the main boards

freely available.

The Arduino is an open source project, which means many

companies have free access to the layout and

specifications of the board, and are legally allowed to

produce their own versions for sale, with – or without

modifications. These clones are not illegal, and are freely

available for you to purchase and use with the genuine Arduino Integrated Development

Environment. (IDE).

In the projects that follow we will be using the Arduino UNO. We will be using an Iduino branded

Uno…However any brand and version will be fine to use.

About the guide
This guide is written from a hobbyist perspective, aiming to deliver the reader with sample code

and a basic but functional understanding of how the Arduino works, and how to use it.

The projects aim to be informative and interesting, and most importantly the code should be as

simple as possible to follow, and easy to modify for your own projects!

If you have any queries or comments please email the author (Tyson) at prot3us1@gmail.com. I

will respond ASAP and do my best to help you with your problems.

Safety
Personal safety is not generally an issue while operating the Arduino from USB or battery. Be

aware of the voltages you are working with and always stay within your own abilities. None of

the projects that follow are dangerous, however if you decide to use separate power (for

instance, to drive motors) you should be aware that incorrectly wiring or running your project

while plugged into USB can potentially damage your USB ports. Always follow the instructions

and check your wiring before plugging your Arduino in. Also remember the Arduino will begin

running code as soon as it is powered. So if you wish to start a new project it is always good

practice to upload a blank sketch to the Arduino before wiring any new modules, to ensure the

IO ports are not doing anything that will compromise your new project.

mailto:prot3us1@gmail.com

2 Title

© Tyson Popynick 2016 for Aus Electronics Direct

What you need
For the projects in this guide we will make use of many commonly purchased modules and

components. I recommend purchasing one of the starter kits available from

www.auselectronicsdirect.com.au to give your collection a boost, and set you up to make many

fun projects. I will try to explain choices on components as we go along so you can make your

own judgments on potential replacement parts, however if you are new to electronics it is best

to simply use exactly what is specified to ensure straightforward use.

At minimum you will need:

• Arduino Board

• IDE (Integrated Development Environment) Software

(https://www.arduino.cc/en/Main/Software)

• A computer that will run the software

• A breadboard

• Components or modules that you need for your desired project

http://www.auselectronicsdirect.com.au/
https://www.arduino.cc/en/Main/Software

3 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Contents
About the product ... 1

Contents .. 3

Setup ... 3

Align the iron holder: .. 3

Prepare the sponge: .. 3

Insert the iron attachment: ... 4

Tin the tip: ... 4

Summary of setup: .. 4

Using the ZD-931 ... 5

4 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Getting Started
First download the Arduino IDE and install it. The latest version can be found at

www.arduino.cc/en/Main/Software.

Once this is installed, plug your Arduino into a spare USB port on your computer and the drivers

will be automatically installed.

At this point your Arduino is running a blank sketch. A sketch is the Arduino term for a program.

Every sketch consists of 2 main functions, and runs immediately once adequate power is

provided to the Arduino board.

An example of a sketch will follow, and I will explain each part, the red text is NOT part of the

sketch. The blue text IS:

//COPY FROM THIS LINE (You may include this line in the copy operation, but it is not necessary
to do so) <- This line tells you to begin copying from here.
//Global Variables go here <- This is a single line comment.
Global variables are like containers to hold data that the entire sketch can access.

void setup() {
/*Runs once at startup*/ <- As mentioned, the code inside the startup() function will only run once,
making it the perfect place to set up serial communications and other instructions that you need to run a
single time before the main loop starts.

//You can also place LOCAL variables inside functions, only the function they are inside can access them
however, and as soon as the function completes they are lost.

}

void loop() {
/*Runs immediately after setup(), and once the end is reached, begins again at the start of
loop().*/
//This function is where your main code will go. It is run from top to bottom in the exact order it is
written, and once the end is reached, it returns to the top and starts again. The Arduino will run this loop
as fast as it possibly can. However it is free-running, so as you add more instructions it will run slower
(slightly).

//A quick word on local vs global variables – If I were to try to access a global variable from here, it would
succeed. I could edit or read it without a problem. However if I tried to access a variable that was declared
inside setup() it would fail, seeing as loop() is outside setup. This may seem confusing right now but you
will understand more as you progress.

}
//Additional Functions
Once you get into more advanced programming you will need to add your own functions, for instance –
you may routinely flash an LED to indicate something. You could make a function here that would do so,
then call this function from inside loop. This saves you having to repeat the same code over and over
inside loop.

//COPY TO THIS LINE (You may include this line in the copy operation, but it is not necessary to
do so) <- This indicates the end of a sketch. If you are copy/pasting you should stop copying at this line.

file:///C:/Users/Tyson/Desktop/AED/Soldering%20Station/www.arduino.cc/en/Main/Software

5 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Debugging and Error tracking
It is easy to get lost in code and create errors. If you forget a part of syntax such as a bracket or

comment, the IDE will likely tell you about the problem…but if the code is written correctly, but

doesn’t function correctly – how do you find it?

The Serial Monitor!

This window allows us to have the Arduino send text back to the PC, so we can create a log of

what is happening, or even relay data back to ourselves as the Arduino processes live.

The serial monitor is a 2 way connection, we can send and receive data to and from the Arduino.

Of course most projects are not intended to be plugged into the PC forever…so generally

buttons etc are a better method of interacting with the Arduino.

Questions and troubleshooting
Please don’t hesitate to contact me at prot3us1@gmail.com with comments or questions

regarding the Arduino, I will do my best to reply promptly and sort any issues out. This service is

offered free of charge for troubleshooting and simple help. There is a service available where I

can assist you or take the lead on writing sketches for you for a modest fee. Feel free to enquire

at the above email address if this sounds like something you require.

Arduino Programming
Arduino uses a proprietary coding language based on C# or MONO, the syntax should be familiar

to anyone who has programmed in these languages before.

Functions do not need to be declared, but variables do. Variables do not need to be explicitly

initialized, although you should always do so to avoid problems later.

Syntax:

All lines of code should be appended with a colon to tell the compiler it is the end of an

instruction.

All functions are called by name, followed by () with any parameters inside the brackets.

All functions including if-else statements etc should be followed by curly braces to keep code

clean and minimize errors. For example:

mailto:prot3us1@gmail.com

6 Title

© Tyson Popynick 2016 for Aus Electronics Direct

If (x == 1) {

//instructions to execute if true

}

//Instructions to execute if false.

Variables:

Declare the type, then the name, then the value as follows variables are case sensitive so x is not

the same as X:

Int temp = 1;

Bool x = 0;

String temp = “Hello World”;

Integers can be increased or decreased using the shorthand ++ as follows:

Int temp = 0; //Declare a integer called temp, and initialize it to 0.

temp++; //Adds 1 to temp. temp is now 1.

temp--; //Subtracts 1 from temp. temp is now 0.

Functions:

Functions do not need to be declared like in some languages, instead you simply write the

function itself and call it by name.

To write the function you declare the type of data to be returned, or void if nothing is returned.

You then declare the name, then any parameters that would need to be used also. An example

follows:

void flashLED(int numFlashes) { <- void tells Arduino there is nothing returned. Int numFlashes
tells Arduino there should be an integer provided.

for (int x = 0; x < numFlashes; x++) {
digitalWrite(9, HIGH);
delay(1000);
digitalWrite(9, LOW);

}
Serial.write(“Flashed LED “);
Serial.write(numFlashes);
Serial.writeln(“ times.”);
}
To use this code we would do the following in the main loop or another function:
flashLED(10); <- Would flash the LED 10 times.

7 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Alternatively, if you need to return data, for instance if you are processing data, you would use

the following:

Int addFive(int numberIn) { //We want to return an integer.
numberIn + 5; //take the number provided, and add 5.
return numberIn; //return the answer.
}

This would be called in the same way, however it would return a value…see the example that

follows:

Int number = 7; //We have an integer with a value of 7 stored in the variable “number”.
number = addFive(number); //number equaled 7. The function then added 5 to it. So number
now is equal to 12. Look at it as if the result replaces the function name, so this looks like:
number = Result of Function. And the result of 5 + 7 = 12.

IO Ports:

Accessing the IO ports is quite easy on the Arduino, they are referred to by their number.

Arduino in most cases will automatically configure the pin between input and output based on

the function you use, however in some cases you may wish to manually set the pin up, for

instance if you need to set up the internal pull up or pull down resistors etc. If you have need of

this you should go to www.arduino.cc, all of the available functions and variables are listed

there and this guide is simply meant to give the newcomer enough experience to get started

and understand enough about the device to then go on to their own research.

Libraries
During your adventures with Arduino there are often premade programs used to interact with

modules and sensors. These are often top quality and there is no point to rewriting them. These

are called libraries, they will allow you to use your modules quickly and easily.

You can google search the libraries and find plenty of support and instructions on using them

(above and beyond what I provide).

A library allows you to call functions that are already written, for instance...the RFID library

contains all of the raw code to access the hardware, all we need to do is initialize it and call the

functions. If it wasn’t for this library we would need to manually code the protocol and data

lines. A library does all the heavy lifting.

The method of installing and using these libraries follows on the next page.

http://www.arduino.cc/

8 Title

© Tyson Popynick 2016 for Aus Electronics Direct

First you should navigate to the Sketch -> Include Library Menu.

Click on Manage Libraries and the following window will appear:

9 Title

© Tyson Popynick 2016 for Aus Electronics Direct

You can then search by keyword for a library. In the example above I have searched for RFID as I

am looking for an RFID library.

I am presented with 3 results. I choose the middle result and click the install button. If there is a

drop down box with multiple versions, I choose the latest version. The reason I have chosen the

middle option is because the RFID module I have is based on the MFRC522 chip and uses SPI

communication. You will be faced with similar options in the future and can always refer to the

documentation from the manufacturer or place of purchase to help you choose the correct

option.

This will now install the library to your Arduino directory. You have one final step to add it to

your project, and that is to select it from the list of libraries. You only need to install each library

once and then it is kept automatically in your Arduino directory for you to use any time.

10 Title

© Tyson Popynick 2016 for Aus Electronics Direct

In this example I have selected the MFRC522 Library we just installed. If you are installing a

different library, please select the appropriately named option.

11 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 1
(Serial Communication)

Project Aim/Description:

This project will show you how to communicate with the Arduino, including sending data to the

Arduino as well as getting data back from the Arduino.

What you need:

• Arduino

Expected outcome:

You will be able to send a string of text to the Arduino, as well as have the Arduino send a string

of text back.

Procedure:

This project is very simple, we will upload a sketch to the Arduino, open the serial monitor and

use the textbox to send a string to the board. The Arduino will then send the Text back, after

reformatting it.

To begin, copy the code below into the IDE window (left) as illustrated in the image that follows,

you will also want to bring up the SERIAL MONITOR (right in image). To do this, open the TOOLS

menu, and select SERIAL MONITOR.

12 Title

© Tyson Popynick 2016 for Aus Electronics Direct

CODE:

//COPY FROM THIS LINE
void setup() {
Serial.begin(9600);
Serial.println("Serial connection established...\n\nPlease enter text above and press send.\n");
}

void loop() {
 String temp = Serial.readString(); /*This is a LOCAL variable, it will store any text we send TO
the Arduino FROM the PC.*/
if (temp != NULL) { //If the variable is NOT empty run the next instructions
 Serial.print("You sent the string: "); //Print the string
 Serial.print(temp); //then print the text we sent to the Arduino
 Serial.println("."); //Finally print a fullstop. This is data FROM the Arduino TO the PC.
 }
//If there is no text entered, the Arduino will continue processing from here…But as there are no
further instructions, it will return to the top and start again. If you were to put something here
such as a Serial.print() command, it would fire constantly until you provide a string of text. Feel
free to try it!
}
//COPY TO THIS LINE

13 Title

© Tyson Popynick 2016 for Aus Electronics Direct

With the code copied into the IDE window (replacing all the text that was previously in there),

you now simply need to click the UPLOAD button, and the Arduino will receive the code and

start executing it!

The upload button can be found in the top left of the IDE window and looks like this:

Press the button and you will see the progress at the bottom of the IDE window. Once it

completes you will be greeted with the following text in the serial monitor:

Serial connection established…

Please enter text above and press send.

You will notice a text box at the top of the serial monitor window, with a send button next to it.

Type some text into the box, and press enter or click the send button.

You should now see:

You sent the string: <TEXT YOU ENTERED>.

Looking at the code we uploaded again, can you see what is happening?

Notes:

In this project we learned:

How to enter and upload code to the Arduino.

How to send and receive data to and from the Arduino.

How to bring up and use the serial monitor.

The Serial.print function will print text without adding a new line, so the text will continue on as

if it was a single sentence.

The Serial.println function does the same thing, except it adds a newline after the text, as if you

had pressed enter after typing a sentence.

14 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 2
(PWM – Pulse-Width Modulation)

Project Aim/Description:

In this project we will look at Pulse-Width Modulation, how to use the Arduino to generate it,

and what it does.

What you need:

• Arduino

• Breadboard

• LED

• Jumper Wires (Male to Male)

• 1x 1k Resistor
(Brown, Black, Black, Brown, Brown)

Expected outcome:

You will understand what PWM is, and how to use the Arduino to generate it. We will do this by

dimming an LED. An LED is a Light Emitting Diode, and it can only be connected one way. If you

connect it in reverse, it will not work at all.

You can distinguish the polarity of an LED in two ways. Firstly, there will be a longer leg and a

shorter leg on the LED. The longer leg is positive and the shorter leg is negative. Sometimes

however, the leg length may not be easily visible. For instance, if you have cut the legs shorter

15 Title

© Tyson Popynick 2016 for Aus Electronics Direct

for a different project, or bent them for a breadboard. In this case, you can use the second

method.

The second method is to look at the plastic body of the LED. You will notice one side of it is FLAT.

This signifies the NEGATIVE side of the LED.

Procedure:

In this project we will be wiring a circuit on the breadboard. A breadboard is a very handy

prototyping board, which allows you to make non-permanent connections between

components very fast, you can change components and connections without needing to bond

anything together.

16 Title

© Tyson Popynick 2016 for Aus Electronics Direct

A breadboard has internal connections that seem strange at first, but once you have used one a

few times you should see the beauty of it.

This is the inside of a breadboard, the dark lines are copper clips, the white area is insulating plastic.

Notice how the edges of the board are connected in 2 separate lines, and the inside is connected in short

lines with a break down the middle. You can always refer back to this image to see what is going on inside

the breadboard later. It will seem confusing for now, but it will clear up once you have some experience.

The edges are handy for running power, as they are accessible from anywhere on the board, and the inner

lines are great for components. The gap in the middle is specifically designed to allow most microchip

packages to fit across it, allowing access to each pin easily.

In this project we will be connecting an LED to a pin on the Arduino. If we were to connect it to

the 5v output it would shine at full brightness. However we will be using the PWM abilities of

the Arduino to “chop” the 5 volts up. Essentially we will turn 5v on and off rapidly, which will

make the LED turn on and off. The longer we allow the pulses to be, the brighter the LED will

seem. The slower we make them, the dimmer it will seem.

Please wire the circuit as indicated in the image below:

17 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Once you have done this, please upload the following code:

CODE:

//----Begin Code (copy from here)----

//Variables
int pwmVal = 255; //PWM range is 0 - 255. Change this value and reupload to see the
difference!

void setup() {
 // put your setup code here, to run once:
pinMode(ledPin, OUTPUT); //Set the pin we chose above as OUTPUT. This is actually automatic
however I included it to give an example of where you might use this feature.
analogWrite(6, pwmVal); // the 6 is the pin on the Arduino the LED is connected to, pwmVal is
the variable containing the value for the PWM duration. analogWrite tells the Arduino this is a
PWM pin.
}

void loop() {
 // put your main code here, to run repeatedly:
}

//----End Code (copy to here)----

Notes:

The BLUE text is code, the RED text is comments. As you can see there is very little code

required for this project, however I am trying to give fairly detailed explanations in comments,

which makes it look longer than it is.

18 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 3
(Light Sensor <Photoresistor/Light Dependent Resistor>)

Project Aim/Description:

This project aims to show the reader how to use an LDR, also known as a photoresistor in their

projects. The component itself varies its resistance based on the amount of light that hits the

surface, we can measure the resistance and use that to determine the level of light present.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Photoresistor

• 1x 220 Ohm resistor
(Brown, Black, Black, Red, Red)

Expected outcome:

The reader will be able to connect and read a photoresistor, and use the code in their future

projects!

Procedure:

Wire the circuit as follows:

19 Title

© Tyson Popynick 2016 for Aus Electronics Direct

CODE:

//----Begin Code (copy from here)----
//Variables
int inPin = A0; //Pin the sensor is connected to
int sensorVal = 0; //Variable to store sensor data

void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
Serial.println("Serial Communication started...\n");
}
void loop() {
 // put your main code here, to run repeatedly:
sensorVal = analogRead(inPin); //analogRead will read the voltage on the pin specified and
return it as a value between 0 and 1024.
Serial.println(sensorVal); //Print the sensor reading to the serial window so we can view the
data.
}
//----End Code (copy to here)----

20 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Notes:

The LDR varies its resistance based on light hitting it, and the Arduino technically only reads

voltages, so how do we measure resistance?

We are not REALLY measuring the resistance in this circuit, instead we are creating a resistor

divider network between the LDR and the resistor, which will vary the voltage directly based on

the LDRs value. We then read the voltage out of the divider network and print that value.

Google resistor divider network for more information.

21 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 4
(Flame Sensor)

Project Aim/Description:

This project uses a Flame Sensor component to detect the intensity and presence of a flame.

The sensor is designed to isolate and read specific bands of the IR and UV wavelengths to

determine if a pattern corresponding to a flame is present. It is quite an accurate reading, only a

real flame should trigger it.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Flame Sensor

• 1x 220 Ohm Resistor.
(Brown, Black, Black, Red, Red)

Expected outcome:

The user will have the ability to read and use a flame sensor component in their projects, as well

as the code to view the data.

Procedure:

22 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Wire the circuit as follows (You may notice it is identical to the previous project, with only the

sensor changed. It works in the same way…resistance varies based on input):

CODE:

//----Begin Code (copy from here)----
//Variables
int inPin = A0; //Pin the sensor is connected to
int sensorVal = 0; //Variable to store sensor data

void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
Serial.println("Serial Communication started...\nReady to detect Flame.");

}

void loop() {
 // put your main code here, to run repeatedly:
sensorVal = analogRead(inPin); //analogRead will read the voltage on the pin specified and
return it as a value between 0 and 1024.

23 Title

© Tyson Popynick 2016 for Aus Electronics Direct

if (sensorVal < 1000) {
//Flame
Serial.print("Flame: ");
Serial.println(sensorVal);
}
else {
//Uncomment the lines below to view the raw sensor data.
//You can change the "if statement" above to reflect the difference in sensitivity and ambient
values
//Serial.print("Sensor Value: ");
//Serial.println(sensorVal);
}
}
//----End Code (copy to here)----

Notes:

Most of the 2 pin sensors use resistance as a form of reference, therefore they are

interchangeable without changing the code. I have added slightly more complex code for this

project to try to help you start to see how code flows and functions.

24 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 5
(IR Sensor / Remote)

Project Aim/Description:

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• IR Sensor

• Remote Emitter

• IRremote library (Type IR Remote into the library manager as described at the start of the guide) It is the

IRremote library by sheriff.

Expected outcome:

The reader will be able to interface with, demodulate and read the signals from IR remote

controls.

25 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

Notes:

This is a 3 pin sensor, and has no resistor! This sensor actually sends data in the form of pulses

to the Arduino, the IRremote library decodes these pulses and presents you with this

demodulated data.

26 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 6
(Tilt Switch)

Project Aim/Description:

This project shows the reader how to interface with a tilt switch sensor, it is the same method

used to interface with a button, as this sensor is essentially a button in the way that it works.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Tilt Switch Sensor

• 1x 220 Ohm Resistor.
(Brown, Black, Black, Red, Red)

Expected outcome:

The reader will know how to use a tilt switch in their future projects, as well as the code to

interface with it.

27 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
Serial.println("Serial Established..\nTilt board to continue.");
pinMode (7, INPUT); //Set pin 7 to input for reading the sensor.
}
void loop() {
 // put your main code here, to run repeatedly:
if (digitalRead(7) == true)
{
Serial.println("Tilted!");

28 Title

© Tyson Popynick 2016 for Aus Electronics Direct

}
else {
Serial.println("Upright!");
}
}
//----End Code (copy to here)----

Notes:

The tilt sensor is a ball bearing inside a tube, at one end there is a wire and there is a wire

running along the entire length of the tube. When the ball rolls to the end with the wire present,

the ball conducts electricity through both wires, completing the circuit…

When the ball is at the other end, there is no physical connection and the circuit breaks.

29 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 7
(RGB LED)

Project Aim/Description:

The reader will be able to use an RGB LED to create many colors and effects in their projects. We

will use PWM to control each of the channels in the LED (Red, Green and Blue). By mixing these

channels we can achieve any color.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• RGB LED Module

Expected outcome:

You will be able to use PWM to control an RGB LED and create any color you wish! This is

extremely useful for many projects, from status indicators to mood lighting or color matching

with sensors!

30 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
int rPin = 11;
int gPin = 10;
int bPin = 9; //Set the PWM pins to be used on the arduino
int rVal = 0;
int gVal = 0;
int bVal = 0; //Set the values to 0 to begin with
void setup() {
 // put your setup code here, to run once:
//No setup for this project.
}
void loop() {
 // put your main code here, to run repeatedly:
analogWrite(rPin, rVal);
analogWrite(bPin, bVal);

31 Title

© Tyson Popynick 2016 for Aus Electronics Direct

analogWrite(gPin, gVal); //Apply PWM output to each leg of the RGB LED, with the value stored
in the corresponding variable.
rVal = random(0,255);
gVal = random(0,255);
bVal = random(0,255); //Randomise the variables to get a random color each time
delay(500); //Delay before changing colors, so we can see each change.
}
//----End Code (copy to here)----

Notes:

This code randomly changes the channels values so the light constantly changes color. You could

also manually set the channels by changing the following code:

rVal = random(0, 255);

gVal = random(0, 255);

bVal= random(0, 255);

to the following:

rVal = 0; //Change the 0 to the value you desire.

gVal = 0; //Change the 0 to the value you desire.

bVal = 0; //Change the 0 to the value you desire.

32 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 8
(Read a potentiometer)

Project Aim/Description:

The reader will be able to read the value from a potentiometer and use them in their projects!

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• 1x Potentiometer

• 1x 220 Ohm Resistor
(Brown, Black, Black, Red, Red)

Expected outcome:

The reader will be able to wire and use potentiometer values in their circuits. This is extremely

handy to use as an input for brightness, volume, and even as a control input to move values in a

selected range. I have seen projects use these as joysticks to control paddles in pong – type

games even!

33 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

34 Title

© Tyson Popynick 2016 for Aus Electronics Direct

CODE:

//----Begin Code (copy from here)----
//Variables:
int varPin = A0;
int val = 0;

void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
Serial.println("Serial connection established..\nAdjust the Potentiometer to see the value
change!");
}
void loop() {
 // put your main code here, to run repeatedly:
Serial.print("Potentiometer Value: ");
val = analogRead(varPin);
Serial.println(val);
}
//----End Code (copy to here)----

Notes:

This is sort of a manual LDR, the resistance changes based on the position of the potentiometer

rather than the amount of light on the sensor, but the rest of the circuit is identical. Did you

notice this as you were building it?

35 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 8
(7-Segment Display)

Project Aim/Description:

The reader will be able to display numbers and letters on a 7-Segment display. These are great

for status outputs that require a bit more verbosity than a simple light.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• 7-Segment Display

Expected outcome:

As we move into more complex wiring and code the reader will start to get familiar with using

the breadboard and IDE, and should be feeling more confident overall using the kit. We are

adding another tool to their library this time, in the form of a 7-segment display.

36 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
int pin_a = 6;
int pin_b = 7;
int pin_c = 8;
int pin_d = 9;
int pin_e = 10;
int pin_f = 11;
int pin_g = 12;
int pin_h = 13;
int delayVar = 500;
void setup() {
 // put your setup code here, to run once:
pinMode(pin_a, OUTPUT);
pinMode(pin_b, OUTPUT);
pinMode(pin_c, OUTPUT);
pinMode(pin_d, OUTPUT);

37 Title

© Tyson Popynick 2016 for Aus Electronics Direct

pinMode(pin_e, OUTPUT);
pinMode(pin_f, OUTPUT);
pinMode(pin_g, OUTPUT);
pinMode(pin_h, OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
ch_0();
delay(delayVar);
ch_1();
delay(delayVar);
ch_2();
delay(delayVar);
ch_3();
delay(delayVar);
ch_4();
delay(delayVar);
ch_5();
delay(delayVar);
ch_6();
delay(delayVar);
ch_7();
delay(delayVar);
ch_8();
delay(delayVar);
ch_9();
delay(delayVar);
ch_a();
delay(delayVar);
ch_b();
delay(delayVar);
ch_c();
delay(delayVar);
ch_d();
delay(delayVar);
ch_e();
delay(delayVar);
ch_f();
delay(delayVar);
delay(delayVar);
}
void ch_a()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, LOW);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, HIGH);

38 Title

© Tyson Popynick 2016 for Aus Electronics Direct

digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_b()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_c()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, LOW);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, LOW);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, LOW);
}
void ch_d()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, LOW);
digitalWrite(pin_g, LOW);
digitalWrite(pin_h, HIGH);
}
void ch_e()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, LOW);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, LOW);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_f()

39 Title

© Tyson Popynick 2016 for Aus Electronics Direct

{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, LOW);
digitalWrite(pin_c, LOW);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, LOW);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_1()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, LOW);
digitalWrite(pin_d, LOW);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, LOW);
digitalWrite(pin_g, LOW);
digitalWrite(pin_h, LOW);
}
void ch_2()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, LOW);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, LOW);
digitalWrite(pin_h, HIGH);
}
void ch_3()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, LOW);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, LOW);
digitalWrite(pin_h, HIGH);
}
void ch_4()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, LOW);
digitalWrite(pin_d, LOW);

40 Title

© Tyson Popynick 2016 for Aus Electronics Direct

digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, LOW);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_5()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, LOW);
digitalWrite(pin_e, LOW);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_6()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, LOW);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_7()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, LOW);
digitalWrite(pin_d, LOW);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, LOW);
digitalWrite(pin_h, LOW);
}
void ch_8()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}

41 Title

© Tyson Popynick 2016 for Aus Electronics Direct

void ch_9()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, LOW);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, HIGH);
}
void ch_0()
{
digitalWrite(pin_a, LOW);
digitalWrite(pin_b, HIGH);
digitalWrite(pin_c, HIGH);
digitalWrite(pin_d, HIGH);
digitalWrite(pin_e, HIGH);
digitalWrite(pin_f, HIGH);
digitalWrite(pin_g, HIGH);
digitalWrite(pin_h, LOW);
}
//----End Code (copy to here)----

Notes:

In this project we have defined each letter as a function, we then call the functions in the main

loop in order to display the character we want to see. This is directly translatable to the readers

projects and gives a simple to use template for further symbols and signs. Experiment with the

code to make your own features!

42 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 10
(Passive Buzzer)

Project Aim/Description:

The reader will be able to wire up and use a passive buzzer, which is a small speaker. The passive

buzzer cannot just be fed a DC voltage, it requires an AC voltage to work, and we will use a PWM

signal to simulate an AC voltage to swing the diaphragm. In this example we will generate

random pitches, however it is not difficult to experiment and find a tone you would like.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Passive buzzer (If you apply 5v to it and it just makes a small CLICK, it is passive. If you apply 5v to it and

it emits a steady sound, it is an active buzzer).

Expected outcome:

The reader will be able to generate tones with a passive buzzer using PWM signals to emulate

an ac signal.

43 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:

void setup() {
 // put your setup code here, to run once:
pinMode(6, OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
analogWrite(6, random(0,255)); //Send a random PWM signal to pin 6
delay(500); //wait half a second before changing pitch
}

//----End Code (copy to here)----

Notes:

This is not quite good enough to be used to playback music, but it is certainly useful enough to

emit tones for warnings, or simple MIDI sounds!

44 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 10
(Active Buzzer)

Project Aim/Description:

The reader will be able to use an active buzzer in their projects. An active buzzer has an

oscillator inside which resonates without the need for an AC voltage to be applied. You can

simply connect it to a power source and it will emit a steady tone.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Active Buzzer (If you apply 5v to it and it just makes a small CLICK, it is passive. If you apply 5v to it and it

emits a steady sound, it is an active buzzer).

Expected outcome:

The reader will be able to use an active buzzer to emit tones for their projects, as well as see the

difference between the last project and this one to gain an understanding of the difference

between the 2 types of buzzers.

45 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
void setup() {
 // put your setup code here, to run once:
pinMode(6, OUTPUT);
}
void loop() {
 // put your main code here, to run repeatedly:
digitalWrite(6, HIGH);
delay(500);
digitalWrite(6, LOW);
delay(500);
}
//----End Code (copy to here)----

Notes:

We simply turn the buzzer on and off repeatedly in this project, it is quite loud! An active buzzer

is handy when you don’t have the need for specific tones, or no spare PWM pins left but you still

need to make sounds. You CAN apply a PWM signal to it to change the tone in the same way

dimming an LED works, why don’t you try that?

46 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 12
(Button)

Project Aim/Description:

Buttons seem like a simple idea, press them and you see a change in the circuit right? This

project will demonstrate how to use a button properly. It is a little more complex than you

would assume, we need to use a pull down resistor to ensure the button does not change state

on its own…As well as “debounce” the button, so when you press it we get a clean “on” and

“off” state change, rather than rapidly changing states during the switches operation.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Button

• 1x 220 Ohm Resistor
(Brown, Black, Black, Red, Red)

Expected outcome:

Buttons can be tricky, they have a physical connection inside that can rapidly flicker between on

and off when pressed. This is called bouncing, and can be difficult to fix. There are 2 ways to

tackle the problem…Either in circuitry or in code. In this project we will use a coded solution

rather than a component based solution. Feel free to google using a capacitor to debounce a

switch if you would rather a non coded debounce method.

47 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
int buttonPin = 7; //Pin button is connected to
int buttonState; //Variable to store button state
int lastButtonState = LOW; //Variable to store last state
long lastDebounceTime = 0; //Variable to store time button was last pressed
long debounceDelay = 50; //Minimum amount of time in milliseconds to wait between
presses. (1000 milliseconds per second)
void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
pinMode(buttonPin, INPUT);
Serial.println("Serial communication established...\nPress Button to test.");
}
void loop() {
 // put your main code here, to run repeatedly:
int reading = digitalRead(buttonPin);
if (reading != lastButtonState) {
lastDebounceTime = millis();
}
if ((millis() - lastDebounceTime) > debounceDelay) {
if (reading != buttonState) {
buttonState = reading;
if (buttonState == HIGH) {

48 Title

© Tyson Popynick 2016 for Aus Electronics Direct

//Button pressed
buttonPressed();
}
}
}
lastButtonState = reading;
}
void buttonPressed()
{
Serial.println("Press!");
}
//----End Code (copy to here)----

Notes:

In this project we create a timer that checks if the last time the switch changed states was

sooner than X amount of seconds. If it was we ignore it, otherwise we know the press was

genuine, and trigger the state change in software.

49 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 13
(LM35 Temperature Sensor)

Project Aim/Description:

This project uses an LM35 temperature sensor to communicate to the Arduino the ambient

temperature. It is an extremely accurate sensor and is surprisingly easy to use! We also use a bit

of math to derive the temperature in Celsius!

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• LM35 Temperature Sensor

Expected outcome:

The reader will be able to use an LM35 based temperature sensor to read the ambient

temperature, this project creates a real working temperature logger!

50 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
int varPin = A0; //A0 is the analog in pin
int val = 0; //This will store the current value from the sensor
int oldVal = 0; //This will store the last value from the sensor to compare.

void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
Serial.println("Serial connection established..\nTemperature logging started!");
}

void loop() {
 // put your main code here, to run repeatedly:
oldVal = val; //Store the last value in the variable
val = analogRead(varPin); //Store the new value in its variable
if (oldVal != val) //If the temperature has changed, tell us the new temp
{
Serial.print("Temp: ");
Serial.print(5.0 * val * 100 / 1024); //please see note at bottom regarding this formula.
Serial.println(" Degrees(Celsius)");
}
delay(500); //Wait half a second, then do it again. (This allows the line to settle between reads.
Not really required, but it does remove a bit of jitter

51 Title

© Tyson Popynick 2016 for Aus Electronics Direct

}

//----End Code (copy to here)----

Notes:

The formula used to convert to temperature was derived from the data sheet. In this case we
have the following elements:
5.0 is the voltage we are inputting.
100 is the multiplier to convert from mV to V
1024 is the maximum resolution of the analog input on the arduino.
Essentially we know from the data sheet that 10mV = 1 degree, which means if we convert and
clean the reading using the above formula, we get the temperature in Degrees Celsius -/+ half a
degree.

You will notice the temperature will display in the serial monitor. If you touch the sensor you
will see the reading go up, and once you let go you will see it drop back down as the sensor
cools.

52 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 14
(Sound Sensor/Microphone)

Project Aim/Description:

This project uses a microphone module to detect and measure sound. As sound waves travel

through the air they cause everything they come into contact with to vibrate. Using this sensor

we can measure these vibrations. The Arduino by itself is not the best solution for sound

processing and recording, although with a cheap module it certainly can do it. For this project

we will look at measuring the loudness of the sound. You could also use it to measure the pitch

of the sound with a little more programming. (We will be measuring the raw volume, to

measure pitch you would want to count the variance over time to work out the cycles a second,

then compare this to a database of hz – pitch).

What you need:

• Arduino

• Jumper Wires (Male to Female)

• Sound Sensor Module

Expected outcome:

The reader will be able to interface a sound sensor module to their Arduino and use it in their

projects. In the configuration shown we will be measuring raw sound levels.

53 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

CODE:

//----Begin Code (copy from here)----
//Variables:
int val = 0; //This will store the current value from the sensor
int dval = 0; //This will store the current value from the onboard comparator.
int oldval = 0; //Variable to store the old analog value
int olddval = 0; //variable to store the old digital value

void setup() {
 // put your setup code here, to run once:
pinMode(7, INPUT); //Set pin 7 to digital input. Analog pins are automatically input.
Serial.begin(9600);
Serial.println("Serial connection established…\nVolume logging started!");
}

void loop() {
 // put your main code here, to run repeatedly:
oldval = val; //Store the last analog value in oldval
olddval = dval; //store the lastdigital value in olddval
val = analogRead(A0); //Store the new value in its variable
dval = digitalRead(7); //Store the new digital value in its variable

54 Title

© Tyson Popynick 2016 for Aus Electronics Direct

if (oldval != val) {
Serial.print("Analog Read: ");
Serial.println(val); //Print the sensor value.
Serial.print("Digital Read: ");
Serial.println(dval); //Print the differential comparator result
}
delay(100); //Wait half a second, then do it again. (This allows the line to settle between reads.
Not really required, but it does remove a bit of jitter
}
//Remember you can always comment out the analog or digital values above to see only the
result you want.
//----End Code (copy to here)----

Notes:

The digital comparator takes an average value and compares the microphone read to it. You can

adjust the value by turning the screw, I had to “unscrew” mine about 15 turns before it was at

the correct threshold. The indicator LED next to the adjustment screw will be on or off. You

should turn the adjustment screw until the LED is right on the edge of changing state, then from

there you can fine tune it as you wish…you might have this set to a certain level to alert you if

the volume is too loud, or perhaps set very low in a silent room to alert you of activity etc.

55 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 15
(Moisture Level Sensor)

Project Aim/Description:

This project will demonstrate the use of the moisture level sensor. This sensor is used to detect

the level of moisture in soil or other medium. This will not tell you volume or humidity in air.

This of it as a digital measuring device to tell you when to water your plants etc.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Moisture Sensor

Expected outcome:

The reader will be able to integrate a moisture sensor into their Arduino projects. The code is

easily modifiable to be used in future projects, such as a plant watering reminder, drought

monitor or skin hydration level sensor.

56 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Wire the circuit as follows:

You should connect the sensor as follows:

SENSOR PIN ARDUINO PIN
S A0

+ 3.3V

- GND

CODE:

//----Begin Code (copy from here)----
//Variables:
int val = 0; //This will store the current value from the sensor
int oldval = 0; //Variable to store the old analog value

void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600);
 Serial.println("Serial connection established…\nMoisture logging started!");
}

void loop() {
 // put your main code here, to run repeatedly:
 oldval = val; //Store the last analog value in oldval
 val = analogRead(A0); //Store the new value in its variable
 if (oldval != val) {
 Serial.print("Moisture level: ");
 Serial.println(val); //Print the sensor value.
 }
}
//----End Code (copy to here)----

Notes:

I had some fun while putting this project together. If you moisten your finger and wipe it on the

sensor, you can actually watch the value drop as the moisture evaporates off the sensor…This is

a very cool sensor despite its simplicity.

57 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 16
(RTC – Real Time Clock Module)

Project Aim/Description:

This project will interface the Arduino with a RTC module based on the DS1302 chip. The reader

will be able to set a time and date, and the module will keep it up to date from there, allowing

calendar and clock access easily in all future projects.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• RTC Module

Expected outcome:

The reader will install a library manually, interface with an RTC chip and set the time. The chip

will then keep the time very accurately indefinitely. If this chip was left unplugged for 10 years,

then re integrated (without re-setting the time) it would still display the correct time, with a

small margin for error.)

Useful for applications when date and time are needed, as the Arduino only knows how many

seconds it has run since powered on, and has no idea of time outside its own scope.

58 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Download the library manually from:
https://github.com/msparks/arduino-ds1302/archive/master.zip
You should extract all files in this zip folder into a folder named RTC inside your Arduino Libraries
folder. Default location is:
C:\Program Files (x86)\Arduino\libraries
Navigate to the libraries folder, create a folder called RTC and extract all files from the archive
there.

If you are having trouble, you can use google to search: Manually installing Arduino Library.

Wire the circuit as follows:

RTC MODULE PIN Arduino PIN

VCC 3.3V
GND GND

CLK 6

DAT 7
RST 8

CODE:

//COPY FROM THIS LINE (You may include this line in the copy operation, but it is not necessary

to do so)

#include <stdio.h>
#include <DS1302.h>

namespace {
//This section is used to define certain parameters for the library. This is not usually needed,
however the author of this particular library has coded it in this way.
//This will create the object we use to interact with the RTC module
DS1302 RTC(8, 7, 6);
//Now we will create a function to format the data as strings for easier use in our projects.
String dayAsString(const Time::Day day) {
 switch (day) {
 case Time::kSunday: return "Sunday";
 case Time::kMonday: return "Monday";
 case Time::kTuesday: return "Tuesday";
 case Time::kWednesday: return "Wednesday";
 case Time::kThursday: return "Thursday";
 case Time::kFriday: return "Friday";
 case Time::kSaturday: return "Saturday";
 }
 return "(invalid day)";
}

https://github.com/msparks/arduino-ds1302/archive/master.zip

59 Title

© Tyson Popynick 2016 for Aus Electronics Direct

//And finally a function to get the data from the module, and format it for printing to the serial
window.
void PrintRTC() {
 Time t = RTC.time();
 String day = dayAsString(t.day);
 char tmp[50];
 snprintf(tmp, sizeof(tmp), "%s %04d-%02d-%02d %02d:%02d:%02d", day.c_str(), t.yr, t.mon,
t.date, t.hr, t.min, t.sec);
 Serial.println(tmp);
}
}
void setup() {
Serial.begin(9600);
RTC.writeProtect(false);
RTC.halt(false);
Time t(2016, 1, 2, 1, 2, 3, Time::kTuesday); //Sets Date to 1 Feb, 1:02:03am also sets Day to
Tuesday. Set this to the current time.
RTC.time(t); //Sends the time as you specified above to the RTC module, and begins the clock.
}

void loop() {
PrintRTC(); //Prints the current time as formatted above.
delay(1000); //Delays for one second, then returns to start of loop.
}
//COPY TO THIS LINE (You may include this line in the copy operation, but it is not necessary to

do so)

Notes:

An RTC is a Real Time Clock. This device is a trickle charge real time clock chip, with the

oscillator and battery integrated into the PCB. This is an all-in-one solution and communicates

using serial protocols with the Arduino.

The library was written by a 3rd party, however it works very well in this application. Feel free

to email me with questions and I will answer if possible.

60 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 17
(Stepper Motor and Driver)

Project Aim/Description:

A stepper motor is a motor that can very precisely move, rather than just spinning randomly it

can move a certain number of degrees for instance. These motors are used in 3D printing

systems and many other high quality projects. A very handy piece of hardware to have.

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

• Stepper Motor (28BYJ-48 – 5 wires)

• Stepper Controller (ZC-A0591)

Expected outcome:

The reader will be able to access and control a stepper motor with their Arduino. Personally I

intend on making a cool clock out of mine, that will use the RTC module to keep time and the

stepper motor and servo to control hands for seconds and hours.

61 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Download the “CheapStepper” Library through library manager as explained at the start of this

guide.

Wire the circuit as follows:

Plug the Stepper motor connector into the connector on the ZC-A0591 board.

Connect the ZX-A0591 board to the Arduino as follows:

ZC-A0591 PIN ARDUINO PIN

1N1 8
1N2 9

1N3 10

1N4 11

- GND

+ +5 – 12V

CODE:

//COPY FROM THIS LINE (You may include this line in the copy operation, but it is not necessary
to do so)
#include <CheapStepper.h>
CheapStepper motorObj (8,9,10,11); //Create the motor object and assign to the pins we used.
bool moveClockwise = true;
void setup() {
 // put your setup code here, to run once:
motorObj.setRpm(12);
Serial.begin(9600);
moveDegrees(180);
}
void loop() {
 // put your main code here, to run repeatedly:
 int stepsLeft = motorObj.getStepsLeft(); //Ask the controller how many steps remain
 if (stepsLeft == 0) {
 Serial.println("Move complete!"); //Print completion status to serial monitor and don’t run
motor
 }
 else {
 motorObj.run(); //Run motor as more steps are needed
 }
}
void moveDegrees(int degIn) {
 //4096 = full turn.
 int result = map(degIn, 0, 360, 0, 4096); //Convert input to steps
 motorObj.newMoveTo(moveClockwise, result); //Move correct number of steps
}

62 Title

© Tyson Popynick 2016 for Aus Electronics Direct

//COPY TO THIS LINE (You may include this line in the copy operation, but it is not necessary to
do so)

Notes:

63 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project 14
(Servo Motor)

Project Aim/Description:

What you need:

• Arduino

• Breadboard

• Jumper Wires (Male to Male)

Expected outcome:

Procedure:

Wire the circuit as follows:

CODE:

Notes:

64 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project N
(RFID Module <TAG Dump>)

Project Aim/Description:

This project will show you how to wire the RFID module, as well as provide code that will simply

dump the contents of the cards memory to the Serial Monitor.

What you need:

• Arduino

• RFID Module

• TAGs or Cards compatible with your module

Expected outcome:

You will be able to wire an RFID module to your Arduino, and access the memory on TAGs and

Cards that are compatible with your reader.

Note: RFID TAGs are secured, the protocol has encryption and the keys are not stored on the

card itself. I will include the ability to use codes to decrypt and encrypt your card, however if you

do not have access to the private key there is no way to simply bypass it.

65 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Begin by installing the MFRC522 library as instructed at the beginning of this guide. This will

install the necessary files on your computer to tell your Arduino how to use and communicate

with the module.

Next you should wire the module as follows:

MODULE PIN ARDUINO PIN

VCC (+ Voltage) 3.3v

RST (Reset) 9

GND (Ground) GND

MISO (Master in Slave out) 12

MOSI (Master out Slave in) 11

SCK (Serial Clock) 13
NSS (Negative Slave Select) 10

IRQ NOT CONNECTED

Please see the image below for an example of the connections:

66 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Once you have done that, upload the following code to the Arduino, and open the serial

monitor. As instructed in the serial output, introduce your tag or card to the reader and you will

see the data stored on it in a table.

CODE:

//***COPY FROM HERE***
//(C) Tyson Popynick for Aus Electronics Direct 2016
/*
Pin connections for the RFID Module:
VCC (Voltage +)
RST (RESET)
GND (Voltage -)
MISO (Master input - Slave Output)
MOSI (Master Output - Slave Input)
SCK (Serial Clock)
NSS (Negative Slave Select)
IRQ (Interrupt ReQuest)

RFID - Arduino
VCC - 3.3V
RST - PIN 9
GND - GND
MISO - PIN 12
MOSI - PIN 11
SCK - PIN 13
NSS - PIN 10
IRQ - NO CONNECTION
*/
#include <SPI.h> //Tell the Arduino it will use the SPI interface
#include <MFRC522.h> //Tell the Arduino it will use the MFRC522 protocol
MFRC522 RFIDModule(10, 9); //Create the reader instance

void setup() {
 Serial.begin(9600); // Init serial to PC
 SPI.begin(); // Init serial to reader
 RFIDModule.PCD_Init(); //Init reader interface
 Serial.println("Scan Card or FOB to read data...");
}

void loop() {
 //This instruction tells the Arduino to keep scanning until it sees a new card or fob
 if (! RFIDModule.PICC_IsNewCardPresent()) {
 return;
 }

 //This instruction tells the Arduino to select and read the card or fob once it finds one
 if (! RFIDModule.PICC_ReadCardSerial()) {
 return;

67 Title

© Tyson Popynick 2016 for Aus Electronics Direct

 }

 //Finally, if a card or fob is found, this instruction dumps the data over serial to the PC
 RFIDModule.PICC_DumpToSerial(&(RFIDModule.uid));
}
//Copy to here.
//Tyson Popynick - Aus Electronics Direct. - Prot3us1@gmail.com

Notes:

This project simply blindly dumps all the data on the card. Please see the next project in order to

write data. Please not the procedure for writing is a bit more complex due to the need to have

safety measures in place to stop you accidentally overwriting important areas of the card.

68 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Project N
(RFID Module <Read & Write>)

Project Aim/Description:

This project follows on from the previous project (RFID Module <TAG Dump>. This time we will

write our own custom data to the tags. Remember that you can corrupt the tags by writing data

to the wrong areas. I have coded in protection to a reasonable extent, while trying to keep the

code simple. Please beware that it is possible to render a card unusable if you are not careful.

Cards and tags are not expensive however, so it is always a good idea to grab some spares!

What you need:

• Arduino

• RFID Module

• TAGs or Cards compatible with your module

Expected outcome:

You will be able to read and write to your RFID tags. This project aims to demonstrate R&W

capabilities for you to use in your own projects.

69 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Procedure:

Follow the previous project, however upload the code that follows instead.

Follow the instructions in the comment at the top of the code. You will need to uncomment

code//comment code depending on what you wish to do.

Feel free to google search or email me for additional help as needed. My email address is on the

title page of this document.

CODE:

//***COPY FROM HERE***
//(C) Tyson Popynick for Aus Electronics Direct 2016
/*
Pin connections for the RFID Module:
VCC (Voltage +)
RST (RESET)
GND (Voltage -)
MISO (Master input - Slave Output)
MOSI (Master Output - Slave Input)
SCK (Serial Clock)
NSS (Negative Slave Select)
IRQ (Interrupt ReQuest)

RFID - Arduino
VCC - 3.3V
RST - PIN 9
GND - GND
MISO - PIN 12
MOSI - PIN 11
SCK - PIN 13
NSS - PIN 10
IRQ - NO CONNECTION

HOW TO USE:
1. If there is a security key assigned to the card or fob, enter it belkow in place of 0xFF.
2. Select the block we are interested in accessing. In the demo we will use block 2.
3. If you would like to write to the card, enter the 16 bytes of data in place of AusElecDirect__
below.
4. If you would like to delete a block, comment the AusElecDirect line, and uncomment the 0,0,0
etc line.
5.

*/
#include <SPI.h> //Tell the Arduino it will use the SPI interface
#include <MFRC522.h> //Tell the Arduino it will use the MFRC522 protocol
MFRC522 RFIDModule(10, 9); //Create the reader instance
MFRC522::MIFARE_Key keyStore; //Create a store for the information on the card.

70 Title

© Tyson Popynick 2016 for Aus Electronics Direct

void setup() {
 Serial.begin(9600); // Init serial to PC
 SPI.begin(); // Init serial to reader
 RFIDModule.PCD_Init(); //Init reader interface
 Serial.println("Scan Card or FOB to read data...");
 /*
 We need to prepare the data store for use. If this is a brand new fob or card the security key
will be 0xFF by default.
 This will be used for reading and writing.
 If the card was written to by another party, change 0xFF to the key below.
 */
 for (byte i = 0; i < 6; i++) {
 keyStore.keyByte[i] = 0xFF;
 }
}

int block = 2; //Which block should be written. There are 63 on a 1kb
card.
byte blockcontent[16] = {"AusElecDirect__"}; //16 byte array to write.
//byte blockcontent[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; //Array of 0. Used to 'delete' a block.
byte readbackblock[18];//DO NOT MODIFY 18 byte array used to store data that is
read. DO NOT MODIFY.
int delayTime = 1000; //Miliseconds to wait between reads.
void loop() {
 //This instruction tells the Arduino to keep scanning until it sees a new card or fob
 if (! RFIDModule.PICC_IsNewCardPresent()) {
 return;
 }

 //This instruction tells the Arduino to select and read the card or fob once it finds one
 if (! RFIDModule.PICC_ReadCardSerial()) {
 return;
 }

 //Finally, if a card or fob is found the next instructions will run:
 //RFIDModule.PICC_DumpToSerial(&(RFIDModule.uid)); //this instruction dumps the data over
serial to the PC.
 //writeBlock(block, blockcontent); //Writes the blockcontent array to the block we selected.

 readBlock(block, readbackblock); //Read selected block into the array we created.
 //Uncomment the write above if you wish to write to the fob or card.

 Serial.print("Block Contents: "); //The following will display the data we read into the array in
the serail monitor.
 for (int x = 0; x < 16; x++) { //Loop through blocks and print contents.
 Serial.write(readbackblock[x]);
 }

 Serial.print("\nRead Complete.\n\n"); //print a new line for readability.

71 Title

© Tyson Popynick 2016 for Aus Electronics Direct

 delay(delayTime); //Set the delay above as needed. Default is 1 second.
 RFIDModule.PCD_Init(); //This will reinitialize the reader after each set of commands, allowing
you to perform multiple operations without resetting the Arduino.
 Serial.println("Scan Card or FOB to read data...");
}
//Additional Functions used to authenticate and read/write to/from blocks. If you are getting to
this point of programming you should read the
//.CPP file, and work from there.
//http://cache.nxp.com/documents/data_sheet/MF1S50YYX_V1.pdf << Datasheet for the
hardware
//https://github.com/miguelbalboa/rfid/blob/master/MFRC522.cpp << CPP for functions.
int writeBlock(int blockNumber, byte arrayAddress[])
{
 int largestModulo4Number=blockNumber/4*4;
 int trailerBlock=largestModulo4Number+3;//determine trailer block for the sector
 if (blockNumber > 2 && (blockNumber+1)%4 == 0){Serial.print(blockNumber);Serial.println(" is
a trailer block:");return 2;}
 //Authenticate to access block
 byte status = RFIDModule.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A,
trailerBlock, &keyStore, &(RFIDModule.uid));
 if (status != MFRC522::STATUS_OK) {
 return 3;
 }
 //Write block
 status = RFIDModule.MIFARE_Write(blockNumber, arrayAddress, 16);
 if (status != MFRC522::STATUS_OK) {
 return 4;
 }
 Serial.println("block was written");
}
int readBlock(int blockNumber, byte arrayAddress[])
{
 int largestModulo4Number=blockNumber/4*4;
 int trailerBlock=largestModulo4Number+3;
 //Authenticate to access block
 byte status = RFIDModule.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A,
trailerBlock, &keyStore, &(RFIDModule.uid));
 if (status != MFRC522::STATUS_OK) {
 return 3;
 }
 //Read block
 byte buffersize = 18;
 status = RFIDModule.MIFARE_Read(blockNumber, arrayAddress, &buffersize);
 if (status != MFRC522::STATUS_OK) {
 return 4;
 }
}
//Copy to here.
//Tyson Popynick - Aus Electronics Direct. - Prot3us1@gmail.com

72 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Notes:

This code can be used to write many cards by setting up the data to be written, then simply

swiping each card in turn.

You can then use the previous project to write a sketch to verify if the cards are correct and

perform some task as needed!

73 Title

© Tyson Popynick 2016 for Aus Electronics Direct

Thank you for reading!

	About the Arduino
	About the guide
	Safety
	What you need
	Contents
	Getting Started
	Debugging and Error tracking
	Questions and troubleshooting
	Arduino Programming
	Libraries
	Project 1 (Serial Communication)
	Project 2 (PWM – Pulse-Width Modulation)
	Project 3 (Light Sensor <Photoresistor/Light Dependent Resistor>)
	Project 4 (Flame Sensor)
	Project 5 (IR Sensor / Remote)
	Project 6 (Tilt Switch)
	Project 7 (RGB LED)
	Project 8 (Read a potentiometer)
	Project 8 (7-Segment Display)
	Project 10 (Passive Buzzer)
	Project 10 (Active Buzzer)
	Project 12 (Button)
	Project 13 (LM35 Temperature Sensor)
	Project 14 (Sound Sensor/Microphone)
	Project 15 (Moisture Level Sensor)
	Project 16 (RTC – Real Time Clock Module)
	Project 17 (Stepper Motor and Driver)
	Project 14 (Servo Motor)
	Project N (RFID Module <TAG Dump>)
	Project N (RFID Module <Read & Write>)

