
Uno R3 super
Starter Kit

2021.2.5.V1.0

GB LED

(COMMON CATHODE)

PC

THERMISTOR

'l PC

LDR5516

PHOTORESISTOR

2PCS

1 N4007 RECTIFIER

DIODE

2PCS

PN2222 TRANSISTOR

2PCS

BlITTON SWlTCH

6*6*5MM

S PCS

PASSIVE BUZZER

1 PC

70MMSOFT

LEAF FAN

1 PC

ACTIVE BUZZER

1 PC

TYPE-C USB CABLE

1 PC

SW520D VIBRATIO

SENSOR

1 PC

SVDCMOTOR

1 PC

PS2 JOYSTICK

AXIS SENSOR

1 PC

74HC595

1 PC

SV RELAY

1 PC

IC L293D

1 PC

lED /GRHN/RED/8 UE/

WHITE/YE OW(5PCS/EACH)

25PCS

65PCS JUMPER WIRE

1 PC

10R-1M
AL FILM RESISTOR

10X 10 PCS

DHT11 SENSOR
MODULE

1 PC

180 DEGREE
9G SERVO

1 PC

IR RECEIVER
1 PC

LCD1602 MODULE
(WITHOUT SOLDER PINS)

1 PC

830 BREADBOARD
1 PC

STEPPER MOTOR

UNL2003 DRM MODULE

1 PC

1 0PIN 20CM MF

JUMPER WIRE

1 PC

0,56lNCH 4 DIGITAL

LED DISPLAY

1 PC

9V BAmRY SNAP

1 PC

0.561NCH SINGLE

LED DISPLAY

1 PC

PT10-2-M

POTENTIOMETER 10K

1 PC

catalog

Lesson 0 Installing IDE..1

Lesson 1 Add Libraries... 7

Lesson 2 Blink...9

Lesson 3 Key control LED...15

Lesson 4 RGB LED...21

Lesson 5 Active buzzer...27

Lesson 6 Passive Buzzer...30

Lesson 7 Tilt Ball Switch...33

Lesson 8 Ultrasonic Sensor Module.. 36

Lesson 9 DHT11 Temperature and Humidity Sensor................................ 40

Lesson 10 Servo... 45

Lesson 11 IR Receiver Module...49

Lesson 12 Analog Joystick Module..55

Lesson 13 Stepper Motor.. 59

Lesson 14 Eight LED with 74HC595...64

Lesson 15 LCD Display..69

Lesson 16 Photocell Experiment... 73

Lesson 17 DC Motors...77

Lesson 18 A digital tube shows traffic light experiment...........................84

Lesson 19 Four Digital Seven Segment Display...92

Lesson 20 Relay Experiment..97

Lesson 21 Analog temperature sensor..100

1/103

Lesson 0 Installing IDE

Introduction

The Arduino Integrated Development Environment (IDE) is the software side of the
Arduino platform.
In this lesson, you will learn how to setup your computer to use Arduino and how to
set about the lessons that follow.
The Arduino software that you will use to program your Arduino is available for
Windows, Mac and Linux. The installation process is different for all three platforms
and unfortunately there is a certain amount of manual work to install the software.
STEP 1: Go to https://www.arduino.cc/en/Main/Software and find below page.

The version available at this website is usually the latest version, and the actual
version may be newer than the version in the picture.
STEP2：Download the development software that is compatible with the operating
system of your computer. Take Windows as an example here.

http://www.arduino.cc/en/Main/Software

2/103

Click Windows Installer.

Click JUST DOWNLOAD.

Also version 1.8.9is available in the material we provided, and the versions of our
materials are the latest versions when this course was made.

Installing Arduino (Windows)

3/103

Click I Agree to see the following interface

Click Next

4/103

You can press Browse… to choose an installation path or directly type in the directory
you want.

Click Install to initiate installation

5/103

Finally, the following interface appears, click Install to finish the installation.

Next, the following icon appears on the desktop

6/103

Double-click to enter the desired development environment

Installing Arduino (Mac OS X)

Download and Unzip the zip file, double click the Arduino.app to enter Arduino IDE;

the system will ask you to install Java runtime library if you don’t have it in your

computer. Once the installation is complete you can run the Arduino IDE.

Installing Arduino (Linux)

You will have to use the make install command. If you are using the Ubuntu system, it is

recommended to install Arduino IDE from the software center of Ubuntu.

7/103

Lesson 1 Add Libraries

Installing Additional Arduino Libraries

Once you are comfortable with the Arduino software and using the built-in functions,
you may want to extend the ability of your Arduino with additional libraries.

What are Libraries?

Libraries are a collection of code that makes it easy for you to connect to a sensor,
display, module, etc. For example, the built-in LiquidCrystal library makes it easy to
talk to character LCD displays. There are hundreds of additional libraries available on
the Internet for download. The built-in libraries and some of these additional
libraries are listed in the reference. To use the additional libraries, you will need to
install them.

How to Install a Library

Using the Library Manager
To install a new library into your Arduino IDE you can use the Library Manager
(available from IDE version 1.8.9). Open the IDE and click to the "Sketch" menu and
then Include Library > Manage Libraries.

8/103

and then Include Library > Manage Libraries.

Example: IRromote

Open arduino software - project - load library - add a .zip library

Add method two:

Copy the library folder to the Libraries folder in the Arduino installation directory.
Restart Arduino and the added library will take effect.

9/103

Lesson 2 Blink

Overview:

In this lesson, you will learn how to program the ZY UNO R3 controller board to make
the built-in LED flash, and how to download the program according to the basic
steps.

Component Required:

1 x ZY UNO R3

Principle:

The ZY UNO R3 board has rows of connectors along both sides that are used to
connect to several electronic devices and plug-in 'shields' that extends its capability.
It also has a single LED that you can control from your sketches. This LED is built onto
the ZY UNO R3 board and is often referred to as the 'L' LED as this is how it is labeled
on the board.

10/103

You may find that your ZY UNO R3 board's 'L' LED already blinks when you connect it
to a USB plug. This is because the boards are generally shipped with the 'Blink' sketch
pre-installed.
In this lesson, we will reprogram the ZY UNO R3 board with our own Blink sketch and
then change the rate at which it blinks.
In Lesson 1, you set up your Arduino IDE and made sure that you could find the right
serial port for it to connect to your ZY UNO R3 board. The time has now come to put
that connection to the test and program your ZY UNO R3 board.
The Arduino IDE includes a large collection of example sketches that you can load up
and use. This includes an example sketch for making the 'L' LED blink.

Load the 'Blink' sketch that you will find in the IDE's menu system under File >
Examples > 01.Basics

11/103

Upload code needs to select the board model Arduino/Genuino Uno

12/103

The upload code also needs to select the board port number. Our computer displays
the port number of arduino as: "COM4 Arduio / Genuino Uno", you may be the other
serial port number.
Note: A correct COM port should be COMX (arduino) XXX), which is certified by the
standard.

Note that a huge part of this sketch is composed of comments. These are not actual
program instructions; rather, they just explain how the program works. They are
there for your benefit.
Everything between /* and */ at the top of the sketch is a block comment; it explains
what the sketch is for.
Single line comments start with // and everything up until the end of that line is
considered a comment.
The first line of code is:
int led = 13;
As the comment above it explains, this is giving a name to the pin that the LED is
attached to. This is 13 on most Arduinos, including the ZY UNO and Leonardo.
Next, we have the 'setup' function. Again, as the comment says, this is executed
when the reset button is pressed. It is also executed whenever the board resets for
any reason, such as power first being applied to it, or after a sketch has been
uploaded.
void setup()
{

// initialize the digital pin as an output.
pinMode(led, OUTPUT);

}
Every Arduino sketch must have a 'setup' function, and the place where you might
want to add instructions of your own is between the { and the }.
In this case, there is just one command there, which, as the comment states tells the
Arduino board that we are going to use the LED pin as an output.

13/103

It is also mandatory for a sketch to have a 'loop' function. Unlike the 'setup' function
that only runs once, after a reset, the 'loop' function will, after it has finished running
its commands, immediately start again.
void loop() {
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second

digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
}
Inside the loop function, the commands first of all turn the LED pin on (HIGH), then
'delay' for 1000 milliseconds (1 second), then turn the LED pin off and pause for
another second.

You are now going to make your LED blink faster. As you might have guessed, the key
to this lies in changing the parameter in () for the 'delay' command.
This delay period is in milliseconds, so if you want the LED to blink twice as fast,
change the value from 1000 to 500. This would then pause for half a second each
delay rather than a whole second.

14/103

Upload the sketch again and you should see the LED start to blink more

quickly.Note: I want to add some information about how to open

the serial monitor here.

Serial port is generally selected 9600HZ

15/103

Lesson 3 Key control LED

Overview:

In this course, you will learn how to use the button control LEDs to implement the
delay control function.

Component Required:

1 x ZY UNO R3
1 x 5mm red LED
1 x 220 ohm resistor
1 x 1k ohm resistor
1 x 830 Tie Points Breadboard
1 x button
3 x M-M wires (Male to Male jumper wires)

BREADBOARD MB-102：

A breadboard enables you to prototype circuits quickly, without having to solder the
connections. Below is an example.

Breadboards come in various sizes and configurations. The simplest kind is just a grid
of holes in a plastic block. Inside are strips of metal that provide electrical connection
between holes in the shorter rows. Pushing the legs of two different
components into the same row joins them together electrically. A deep channel
running down the middle indicates that there is a break in connections there,
meaning, you can push a chip in with the legs at either side of the channel without
connecting them together. Some breadboards have two strips of holes running along
the long edges of the board that are separated from the main grid. These have strips
running down the length of the board inside and provide a way to connect a
common voltage. They are usually in pairs for +5 volts and ground. These strips are
referred to as rails and they enable you to connect power to many components or
points in the board.

16/103

While breadboards are great for prototyping, they have some limitations. Because
the connections are push-fit and temporary, they are not as reliable as soldered
connections. If you are having intermittent problems with a circuit, it could be due to
a poor connection on a breadboard.

LED:

LED (Light Emitting Diode), which converts electrical energy into light energy, also has
unidirectional conductivity and a reverse breakdown voltage of about 5V. Its forward
volt-ampere characteristic curve is very steep, and the current-limiting resistor must
be connected in series. In a 5V circuit, a resistor of about 400 ohms is generally used.
The longer of the two pins of the LED is the positive pole. There are two ways to
connect, when the positive pole of the led through the current limiting resistor and
Arduino
The I/O port is connected and the other end is grounded. At this time, when the
Arduino output is high, the led is lit, and when the output is low, the led is off.
2. When the negative pole of the led is connected to the I/O port of the Arduino, the
other end is connected to the 5V voltage through the current limiting resistor. At this
time, Arduino
When the output is low, the led is lit, and when the output is high, the led is off.

If you do not use a resistor with an LED, then it may well be destroyed almost
immediately, as too much current will flow through, heating it and destroying the
'junction' where the light is produced.

17/103

There are two ways to tell which is the positive lead of the LED and which the
negative.
Firstly, the positive lead is longer.
Secondly, where the negative lead enters the body of the LED, there is a flat edge to
the case of the LED.
If you happen to have an LED that has a flat side next to the longer lead, you should
assume that the longer lead is positive.

RESISTORS:

As the name suggests, resistors resist the flow of electricity. The higher the value
of the resistor, the more it resists and the less electrical current will flow through it.
We are going to use this to control how much electricity flows through the LED
and therefore, how brightly it shines.

Unlike LEDs, resistors do not have a positive and negative lead. They can be
connected either way around.
If you find this approach method t oo complicated, you can read the color ring flag
on our resistors directly to determine its resistance value. Or you may use a digital
multimeter instead.

18/103

Button:

The button as an I/O port input device has seen the effect of the last use. It is
actually used to control the on/off of the line, and the effect of changing the I/O port
signal is achieved by adding a device such as a pull-up resistor.

Connection Diagram:

19/103

Wiring schematic:

Physical wiring diagram:

20/103

Code:

void setup ()
{
pinMode(4,INPUT_PULLUP); //Set port 4 as input and port 13 as output mode
pinMode(13,OUTPUT);
}

void loop()
{
int n =digitalRead(4); //Create a variable n and assign it the state of the number 4
digital port.
if (n==HIGH) //To determine whether n is a high level, if the following statement is
executed, then skip.
{
digitalWrite(13,HIGH);

}
else
{
digitalWrite(13,LOW);
}

}

In the program we have a new statement, the judgment sentence If, please refer to
the Arduino grammar manual to check the information about the If statement.

21/103

Lesson 4 RGB LED

Overview:

RGB LEDs are a fun and easy way to add some color to your projects. Since they are
like 3 regular LEDs in one, how to use and connect them is not much different. They
come mostly in 2 versions: Common Anode or Common Cathode.
Common Anode uses 5V on the common pin, while Common Cathode connects to
ground.
As with any LED, we need to connect some resistors inline (3 total) so we can limit
the current being drawn.
In our sketch, we will start with the LED in the Red color state, then fade to Green,
then fade to Blue and finally back to the Red color. By doing this we will cycle through
most of the color that can be achieved.

Component Required:

1 x ZY Uno R3
1 x 830 Tie Points Breadboard
4 x M-M wires (Male to Male jumper wires)
1 x RGB LED
3 x 220 ohm resistors

Component Introduction RGB:

At first glance, RGB (Red, Green and Blue) LEDs look just like regular LEDs.
However, inside the usual LED package, there are actually three LEDs, one red, one
green and yes, one blue. By controlling the brightness of each of the individual LEDs
you can mix pretty much any color you want.
We mix colors the same way you would mix paint on a palette - by adjusting the
brightness of each of the three LEDs. The hard way to do this would be to use
different value resistors (or variable resistors) as we did with in Lesson 2, but that's a
lot of work! Fortunately for us, UNO R3 board has an analogWrite function that you
can use with pins marked with a ~ to output a variable amount of power to the
appropriate LEDs.

The RGB LED has four leads. There is one lead going to the positive connection of
each of the single LEDs within the package and a single lead that is connected to all
three negative sides of the LEDs.

22/103

Here on the photographs you can see 4 electrode LED. Every separate pin for Green
or Blue or Red color is called Anode. You will always connect “+” to it. Cathode goes
to “-“(ground). If you connect it other way round the LED will not light.
The common negative connection of the LED package is the second pin from the flat
side. It is also the longest of the four leads and will be connected to the ground.
Each LED inside the package requires its own 220Ω resistor to prevent too much
current flowing through it. The three positive leads of the LEDs (one red, one green
and one blue) are connected to ZY UNO output pins using these resistors.

23/103

Connection Diagram:

Wiring schematic:

24/103

Physical wiring diagram:

Code:

#define BLUE 3
#define GREEN 5
#define RED 6

void setup()
{
pinMode(RED, OUTPUT);
pinMode(GREEN, OUTPUT);
pinMode(BLUE, OUTPUT);
digitalWrite(RED, HIGH);
digitalWrite(GREEN, LOW);
digitalWrite(BLUE, LOW);
}

// define variables
int redValue;
int greenValue;
int blueValue;

25/103

// main loop
void loop()
{
#define delayTime 10 // fading time between colors

redValue = 255; // choose a value between 1 and 255 to change the color.
greenValue = 0;
blueValue = 0;

// this is unnecessary as we've either turned on RED in SETUP
// or in the previous loop ... regardless, this turns RED off
// analogWrite(RED, 0);
// delay(1000);

for(int i = 0; i < 255; i += 1) // fades out red bring green full when i=255
{
redValue -= 1;
greenValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(RED, 255 - redValue);
// analogWrite(GREEN, 255 - greenValue);
analogWrite(RED, redValue);
analogWrite(GREEN, greenValue);
delay(delayTime);
}

redValue = 0;
greenValue = 255;
blueValue = 0;

for(int i = 0; i < 255; i += 1) // fades out green bring blue full when i=255
{
greenValue -= 1;
blueValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(GREEN, 255 - greenValue);
// analogWrite(BLUE, 255 - blueValue);
analogWrite(GREEN, greenValue);
analogWrite(BLUE, blueValue);
delay(delayTime);
}

redValue = 0;

26/103

greenValue = 0;
blueValue = 255;

for(int i = 0; i < 255; i += 1) // fades out blue bring red full when i=255
{
// The following code has been rearranged to match the other two similar sections
blueValue -= 1;
redValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(BLUE, 255 - blueValue);
// analogWrite(RED, 255 - redValue);
analogWrite(BLUE, blueValue);
analogWrite(RED, redValue);
delay(delayTime);
}
}

27/103

Lesson 5 Active buzzer

Overview：

In this lesson, you will learn how to generate a sound with an active buzzer.

Component Required:

1 x ZY Uno R3
1 x Active buzzer
1 x 830 Tie Points Breadboard
2 x M-M wires (Male to Male jumper wires)

BUZZER:

Electronic buzzers are DC-powered and equipped with an integrated circuit. They are
widely used in computers, printers, photocopiers, alarms, electronic toys, automotive
electronic devices, telephones, timers and other electronic products for voice devices.
Buzzers can be categorized as active and passive ones. Turn the pins of two buzzers
face up. The one with a green circuit board is a passive buzzer, while the other
enclosed with a black tape is an active one.

28/103

Connection Diagram:

Wiring schematic:

29/103

Physical wiring diagram:

Code：

void setup() {
pinMode(12,OUTPUT);
}

void loop() {
digitalWrite(12, HIGH);
delay(2000);
digitalWrite(12, LOW);
delay(2000);

}

30/103

Lesson 6 Passive Buzzer

Overview

In this lesson, you will learn how to use a passive buzzer.
The purpose of the experiment is to generate eight different sounds, each sound
lasting 0.5 seconds: from Alto Do (523Hz), Re (587Hz), Mi (659Hz), Fa (698Hz), So
(784Hz), La (880Hz), Si (988Hz) to Treble Do (1047Hz).

Component Required:

1 x ZY Uno R3
1 x Passive buzzer
1 x 830 Tie Points Breadboard
2 x M-M wires (Male to Male jumper wires)

Passive Buzzer:

The working principle of passive buzzer is using PWM generating audio to make the
air to vibrate. Appropriately changed as long as the vibration frequency, it can
generate different sounds. For example, sending a pulse of 523Hz, it can generate
Alto Do, pulse of 587Hz, it can generate midrange Re, pulse of 659Hz, it can produce
midrange Mi. By the buzzer, you can play a song.
We should be careful not to use the UNO R3 board analog Write () function to
generate a pulse to the buzzer, because the pulse output of analog Write () is fixed
(500Hz).

31/103

Connection Diagram:

Wiring schematic:

32/103

Physical wiring diagram:

Code：

void setup()
{
}
void loop()
{
for(int i=200;i<=800;i++) //Increase the frequency from 200HZ to 800HZ in a loop
{
pinMode(8,OUTPUT);
tone(8,i); //Output frequency on port 8 delay(5); //This frequency is
maintained for 5 milliseconds
}
delay(4000); //Hold for 4 seconds at the highest frequency
for(int i=800;i>=200;i--)

{
pinMode(8,OUTPUT); tone(8,i);
delay(10);
}
}

33/103

Lesson 7 Tilt Ball Switch

Overview：

In this lesson, you will learn how to use a tilt ball switch in order to detect small angle
of inclination.

Component Required:

1 x ZY Uno R3
1 x Tilt Ball switch
2 x F-M wires (Female to Male DuPont wires)

Tilt sensor:

Tilt sensors (tilt ball switch) allow you to detect orientation or inclination. They are
small, inexpensive, low-power and easy-to-use. If used properly, they will not wear
out. Their simplicity makes them popular for toys, gadgets and appliances.
Sometimes, they are referred to as "mercury switches", "tilt switches" or "rolling ball
sensors" for obvious reasons.
They are usually made up of a cavity of some sort (cylindrical is popular, although not
always) with a conductive free mass inside, such as a blob of mercury or rolling ball.
One end of the cavity has two conductive elements (poles). When the sensor is
oriented so that that end is downwards, the mass rolls onto the poles and shorts
them, acting as a switch throw.
While not as precise or flexible as a full accelerometer, tilt switches can detect
motion or orientation. Another benefit is that the big ones can switch power on their
own. Accelerometers, on the other hand, output digital or analog voltage that must
then be analyzed using extra circuitry.

Component Introduction

34/103

Connection Diagram:

Wiring schematic:

35/103

Physical wiring diagram:

Code：

const int ledPin = 13;//the led attach to
void setup()
{
pinMode(ledPin,OUTPUT);
pinMode(4,INPUT);
digitalWrite(4, HIGH);
}
void loop()

{
int digitalVal = digitalRead(4);
if(HIGH == digitalVal)
{
digitalWrite(ledPin,LOW); //turn the led off
}
else
{
digitalWrite(ledPin,HIGH); //turn the led on
}
}

36/103

Lesson 8 Ultrasonic Sensor Module

Overview:

Ultrasonic sensor is great for all kind of projects that need distance measurements,
avoiding obstacles as examples.
The HC-SR04 is inexpensive and easy to use since we will be using a Library
specifically designed for these sensor.

Component Required:

1 x ZY Uno R3
1 x Ultrasonic sensor module
4 x F-M wires (Female to Male DuPont wires)

Component Introduction

Ultrasonic sensor

Ultrasonic sensor module HC-SR04 provides 2cm-400cm non-contact measurement
function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic
transmitters, receiver and control circuit. The basic principle of work:

Using IO trigger for at least 10us high level signal,
The Module automatically sends eight 40 kHz and detect whether there is a pulse
signal back.
IF the signal back, through high level , time of high output IO duration is the time
from sending ultrasonic tore turning.
Test distance = (high level time × velocity of sound (340m/s) /2
The Timing diagram is shown below. You only need to supply a short 10us pulse to
the trigger input to start the ranging, and then the module will send out an 8 cycle
burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that
is pulse width and the range in proportion .You can calculate the range through
the time interval between sending trigger signal and receiving echo signal. Formula:

37/103

us / 58 = centimeters or us / 148 =inch; or: the range = high level time * velocity
(340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to
prevent trigger signal to the echo signal.

Connection Diagram:

HC-SR04

38/103

Wiring schematic:

Physical wiring diagram:

39/103

Open the serial monitor as follows:

Code:

After wiring, open the program in the code folder - Lesson 8, you need to install the
relevant library file, then click Upload to upload the program.

#include "SR04.h"
#define TRIG_PIN 12
#define ECHO_PIN 11
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN);
long a;
void setup()
{
Serial.begin(9600);
delay(1000);
}
void loop() {
a=sr04.Distance();
Serial.print(a);
Serial.println("cm");
delay(1000);
}

40/103

Lesson 9 DHT11 Temperature and Humidity Sensor

Overview:

In this tutorial we will learn how to use a DHT11 Temperature and Humidity Sensor.
It’s accurate enough for most projects that need to keep track of humidity and
temperature readings.
Again we will be using a Library specifically designed for these sensors that will make
our code short and easy to write.

Component Required:

1 x ZY Uno R3
1 x DHT11 Temperature and Humidity module
3 x F-M wires (Female to Male DuPont wires)

Component Introduction:

41/103

Product parameters:

Relative humidity:

Resolution: 16Bit Repeatability: ±1% RH Accuracy: At 25℃ ±5% RH
Interchangeability: fully interchangeable
Response time: 1 / e (63%) of 25℃ 6s 1m / s air 6s
Hysteresis: <± 0.3% RH
Long-term stability: <± 0.5% RH / yr in Temperature:
Resolution: 16Bit Repeatability: ±0.2℃ Range: At 25℃ ±2℃
Response time: 1 / e (63%) 10S
Electrical Characteristics Power supply: DC 3.5～5.5V
Supply Current: measurement 0.3mA standby 60μA Sampling period: more than 2
seconds
Pin Description:
the VDD power supply 3.5～5.5V DC
DATA serial data, a single bus
NC, empty pin
GND ground, the negative power

Connection Diagram:

DHT11

42/103

Wiring schematic:

Physical wiring diagram:

43/103

Open the serial monitor as follows:

Code:

After wiring, open the program in the code folder - Lesson 9, you need to install the
relevant library file, then click Upload to upload the program.

#include <dht_nonblocking.h>
#define DHT_SENSOR_TYPE DHT_TYPE_11
static const int DHT_SENSOR_PIN = 2;
DHT_nonblocking dht_sensor(DHT_SENSOR_PIN, DHT_SENSOR_TYPE);
/*
* Initialize the serial port.
*/
void setup()
{
Serial.begin(9600);
}
/*
*Poll for a measurement, keeping the state machine alive.
*Returns true if a measurement is available.
*/

static bool measure_environment(float *temperature, float *humidity)
{
static unsigned long measurement_timestamp = millis();

44/103

/* Measure once every four seconds. */
if(millis() - measurement_timestamp > 3000ul)
{
if(dht_sensor.measure(temperature, humidity) == true)
{
measurement_timestamp = millis(); return(true);
}
}
return(false);
}
/*
*Main program loop.
*/
void loop()
{
float temperature; float humidity;
/* Measure temperature and humidity.If the functions returns true, then a
measurement is available. */
if(measure_environment(&temperature, &humidity) == true)
{
Serial.print("T = ");
Serial.print(temperature, 1);

Serial.print(" deg. C, H = ");
Serial.print(humidity, 1);

Serial.println("%");
}
}

45/103

Lesson 10 Servo

Overview：

The servo motor has three wires: power wire, ground wire and signal wire. The
power cord is usually red and should be connected to the 5V pin on the ZY UNO
board. The grounding wire is usually black or brown and should be connected to the
grounding pin on ZY UNO board. The signal pin is usually yellow, orange or white and
should be connected to the digital pin on ZY UNO board. Please note that the servo
system consumes considerable power, so if you need to drive one or more drivers,
you may need to use a separate power supply (i.e. + 5V pin on ZY UNO) to power
them. Make sure the ZY UNO is connected to the ground of the external power
supply.

Component Required:

1 x ZY Uno R3
1 x Servo (SG90)
3 x M-M wires (Male to Male jumper wires)

Component Introduction

46/103

SG90

1. Universal for JR and FP connector
2. Cable length : 25cm
3. No load; Operating speed: 0.12 sec / 60 degree (4.8V), 0.10 sec / 60 degree

(6.0V)
4. Stall torque (4.8V): 1.6kg/cm
5. Temperature : -30~60'C
6. Dead band width: 5us
7. Working voltage: 3.5~6V
8. Dimension : 1.26 in x 1.18 in x 0.47 in (3.2 cm x 3 cm x 1.2 cm)
9. Weight : 4.73 oz (134 g)

Connection Diagram:

47/103

Wiring schematic:

Physical wiring diagram:

48/103

Code:

After wiring, open the program in the code folder - Lesson10, you
need to install the relevant library file, then click Upload to upload the
program.
#include <Servo.h>

Servo myservo; // create servo object to control a servo
// twelve servo objects can be created on most boards
int pos = 0; // variable to store the servo position
void setup() {

myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop() {
for (pos = 0; pos <= 200; pos += 1) { // goes from 0 degrees to 180 degrees

// in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(5); // waits 15ms for the servo to reach the position

}
for (pos = 200; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees

myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(5); // waits 15ms for the servo to reach the position

}
}

49/103

Lesson 11 IR Receiver Module

Overview

Using an IR Remote is a great way to have wireless control of your project.
Infrared remotes are simple and easy to use. In this tutorial we will be connecting the
IR receiver to the ZY UNO R3, and then use a Library that was designed for this
particular sensor.
In our sketch we will have all the IR Hexadecimal codes that are available on this
remote, we will also detect if the code was recognized and also if we are holding
down a key.

Component Required:

1 x ZY Uno R3
1 x IR receiver module
1 x IR remote
3 x F-M wires (Female to Male DuPont wires)

Component Introduction IR RECEIVER SENSOR:
IR detectors are little microchips with a photocell that are tuned to listen to infrared
light. They are almost always used for remote control detection - every TV and DVD
player has one of these in the front to listen for the IR signal from the clicker. Inside
the remote control is a matching IR LED, which emits IR pulses to tell the TV to turn
on, off or change channels. IR light is not visible to the human eye,
which means it takes a little more work to test a setup.
There are a few difference between these and say a CdS Photocells:
IR detectors are specially filtered for IR light, they are not good at detecting visible
light. On the other hand, photocells are good at detecting yellow/green visible light,
and are not good at IR light.
IR detectors have a demodulator inside that looks for modulated IR at 38 KHz. Just
shining an IR LED won't be detected, it has to be PWM blinking at 38KHz. Photocells
do not have any sort of demodulator and can detect any frequency (including DC)
within the response speed of the photocell (which is about 1KHz)

50/103

IR detectors are digital out - either they detect 38KHz IR signal and output low (0V) or
they do not detect any and output high (5V). Photocells act like resistors, the
resistance changes depending on how much light they are exposed to.

What You Can Measure

As you can see from these datasheet graphs, the peak frequency detection is at 38
KHz and the peak LED color is 940 nm. You can use from about 35 KHz to 41 KHz but
the sensitivity will drop off so that it won't detect as well from afar. Likewise, you can
use 850 to 1100 nm LEDs but they won't work as well as 900 to 1000nm so make
sure to get matching LEDs! Check the datasheet for your IR LED to verify the
wavelength.
Try to get a 940nm - remember that 940nm is not visible light!

51/103

Connection Diagram:

Wiring schematic :

52/103

There are 3 connections to the IR Receiver.
The connections are: Signal, Voltage and Ground.
The “-” is the Ground, “S” is signal, and middle pin is Voltage 5V.

Physical wiring diagram:

Open the serial monitor as follows:

53/103

Code:

After wiring, open the program in the code folder - Lesson 11 , you need to install the
relevant library file, then click Upload to upload the program.

#include "IRremote.h"

int receiver = 11; // Signal Pin of IR receiver to Arduino Digital Pin 11

/*-----(Declare objects)-----*/
IRrecv irrecv(receiver); // create instance of 'irrecv'
decode_results results; // create instance of 'decode_results'

/*-----(Function)-----*/
void translateIR() // takes action based on IR code received

// describing Remote IR codes

{

switch(results.value)

{
case 0xFFA25D: Serial.println("CH-"); break;
case 0xFFE21D: Serial.println("CH"); break;
case 0xFF629D: Serial.println("CH+"); break;
case 0xFF22DD: Serial.println("VOL-"); break;
case 0xFF02FD: Serial.println("VOL+"); break;
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
case 0xFFE01F: Serial.println("-"); break;
case 0xFFA857: Serial.println("+"); break;
case 0xFF906F: Serial.println("EQ"); break;
case 0xFF9867: Serial.println("100+"); break;
case 0xFFB04F: Serial.println("200+"); break;
case 0xFF6897: Serial.println("0"); break;
case 0xFF30CF: Serial.println("1"); break;
case 0xFF18E7: Serial.println("2"); break;
case 0xFF7A85: Serial.println("3"); break;
case 0xFF10EF: Serial.println("4"); break;
case 0xFF38C7: Serial.println("5"); break;
case 0xFF5AA5: Serial.println("6"); break;
case 0xFF42BD: Serial.println("7"); break;
case 0xFF4AB5: Serial.println("8"); break;

54/103

case 0xFF52AD: Serial.println("9"); break;
case 0xFFFFFFFF: Serial.println(" REPEAT");break;

default:
Serial.println(" other button ");

}// End Case

delay(500); // Do not get immediate repeat

} //END translateIR
void setup() /*----(SETUP: RUNS ONCE)----*/
{

Serial.begin(9600);
Serial.println("IR Receiver Button Decode");
irrecv.enableIRIn(); // Start the receiver

}/*--(end setup)---*/

void loop() /*----(LOOP: RUNS CONSTANTLY)----*/
{

if (irrecv.decode(&results)) // have we received an IR signal?

{
translateIR();
Serial.println(results.value,HEX);
irrecv.resume(); // receive the next value

}
}/* --(end main loop)-- */

55/103

Lesson 12 Analog Joystick Module

Overview:

Analog joysticks are a great way to add some control in your projects. In this tutorial
we will learn how to use the analog joystick module.

Component Required:

1 x ZY UNO R3
1 x Joystick module
5 x F-M wires (Female to Male DuPont wires)

Joystick

The module has 5 pins: VCC, Ground, X, Y, Key. Note that the labels on yours may be
slightly different, depending on where you got the module from. The thumb stick is
analog and should provide more accurate readings than simple ‘directional’ joysticks
tact use some forms of buttons, or mechanical switches. Additionally, you can press
the joystick down (rather hard on mine) to activate a ‘press to select’ push-button.
We have to use analog ZY UNO pins to read the data from the X/Y pins, and a digital
pin to read the button. The Key pin is connected to ground, when the joystick is
pressed down, and is floating otherwise. To get stable readings from the Key /Select
pin, it needs to be connected to VCC via a pull-up resistor. The built in resistors on
the ZY UNO digital pins can be used. For a tutorial on how to activate the pull-up
resistors for ZY UNO pins, configured as inputs

Component Introduction

56/103

Connection Diagram:

Wiring schematic :

57/103

We need 5 connections to the joystick.
The connections are: Key, Y, X, Voltage and Ground.
“Y and X” are Analog and “Key” is Digital. If you don’t need the switch then you can
use only 4 pins.

Physical wiring diagram:

Open the serial monitor as follows:

58/103

Code:

const int SW_pin = 2; // digital pin connected to switch output
const int X_pin = 0; // analog pin connected to X output
const int Y_pin = 1; // analog pin connected to Y output

void setup() {
pinMode(SW_pin, INPUT);
digitalWrite(SW_pin, HIGH);
Serial.begin(9600);

}

void loop() {
Serial.print("Switch: ");
Serial.print(digitalRead(SW_pin));
Serial.print("\n");
Serial.print("X-axis: ");
Serial.print(analogRead(X_pin));
Serial.print("\n");
Serial.print("Y-axis: ");
Serial.println(analogRead(Y_pin));
Serial.print("\n\n");
delay(500);

}

59/103

Lesson 13 Stepper Motor

Overview:

In this lesson, you will learn a fun and easy way to drive a stepper motor.
The stepper we are using comes with its own driver board making it easy to connect
to our ZY UNO.

Component Required:

1 x ZY Uno R3
1 x 830 tie-points breadboard
1 x ULN2003 stepper motor driver module 1 x Stepper motor
1 x 9V1A Adapter
1 x Power supply module
6 x F-M wires (Female to Male DuPont wires)
1 x M-M wire (Male to Male jumper wire)

Component Introduction:

60/103

Stepper Motor:

A stepper motor is an electromechanical device which converts electrical pulses into
discrete mechanical movements. The shaft or spindle of a stepper motor rotates in
discrete step increments when electrical command pulses are applied to it in the
proper sequence. The motors rotation has several direct relationships to these
applied input pulses. The sequence of the applied pulses is directly related to the
direction of motor shafts rotation. The speed of the motor shafts rotation is directly
related to the frequency of the input pulses and the length of rotation is directly
related to the number of input pulses applied. One of the most significant
advantages of a stepper motor is its ability to be accurately controlled in an open
loop system. Open loop control means no feedback information about position is
needed. This type of control eliminates the need for expensive sensing and feedback
devices such as optical encoders. Your position is known simply by keeping track of
the input step pulses.

Stepper motor 28BYJ-48 Parameters

 Model: 28BYJ-48
 Rated voltage: 5VDC
 Number of Phase: 4
 Speed Variation Ratio: 1/64
 Stride Angle: 5.625° /64
 Frequency: 100Hz
 DC resistance: 50Ω±7%(25℃)
 Idle In-traction Frequency: > 600Hz
 Idle Out-traction Frequency: > 1000Hz
 In-traction Torque >34.3mN.m(120Hz)
 Self-positioning Torque >34.3mN.m
 Friction torque: 600-1200 gf.cm
 Pull in torque: 300 gf.cm
 Insulated resistance >10MΩ(500V)
 Insulated electricity power：600VAC/1mA/1s
 Insulation grade：A
 Rise in Temperature <40K(120Hz)
 Noise <35dB(120Hz,No load,10cm)

61/103

ULN2003 Driver Board:

Product Description

Size: 42mmx30mm
Use ULN2003 driver chip, 500mA
3.A. B. C. D LED indicating the four phase stepper motor working condition. 4.White
jack is the four phase stepper motor standard jack.
Power pins are separated
We kept the rest pins of the ULN2003 chip for your further prototyping.
The simplest way of interfacing a unipolar stepper to Arduino is to use a breakout for
ULN2003A transistor array chip. The ULN2003A contains seven Darlington transistor
drivers and is somewhat like having seven TIP120 transistors all in one package. The
ULN2003A can pass up to 500 mA per channel and has an internal voltage drop of
about 1V when on. It also contains internal clamp diodes to dissipate voltage spikes
when driving inductive loads. To control the stepper, apply voltage to each of the
coils in a specific sequence.

Here are schematics showing how to interface a unipolar stepper motor to four
controller pins using a ULN2003A, and showing how to interface using four com

62/103

Connection Diagram:

Wiring schematic:

ULN2003

63/103

Physical wiring diagram:

Code:

After wiring, open the program in the code folder - Lesson 13 , you need to install the
relevant library file, then click Upload to upload the program.
#include <Stepper.h>
const int stepsPerRevolution = 1500;
// change this to fit the number of steps per revolution
// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);
void setup()
{
// set the speed at 20 rpm:
myStepper.setSpeed(20);
// initialize the serial port:
Serial.begin(9600);
}
void loop() { // step one revolution in one direction:
Serial.println("clockwise");
myStepper.step(stepsPerRevolution);
delay(500);// step one revolution in the other direction:
Serial.println("counterclockwise");

myStepper.step(-stepsPerRevolution); delay(500);
}

64/103

Lesson 14 Eight LED with 74HC595

Overview：

In this lesson, you will learn how to use eight LEDs with an ZY UNO without needing
to give up 8 output pins!
Although you could wire up eight LEDs each with a resistor to an ZY UNOpin you
would rapidly start to run out of pins on your ZY UNO. If you don't have a lot of stuff
connected to your ZY UNO. It's OK to do so - but often times we want buttons,
sensors, servos, etc. and before you know it you've got no pins left. So, instead of
doing that, you are going to use a chip called the 74HC595 Serial to Parallel Converter.
This chip has eight outputs (perfect) and three inputs that you use to feed data into it
a bit at a time.
This chip makes it a little slower to drive the LEDs (you can only change the LEDs
about 500,000 times a second instead of 8,000,000 a second) but it's still really fast,
way faster than humans can detect, so it's worth it!

Component Required:

1 x ZY UNOR3
1 x 830 tie-points breadboard
8 x leds
8 x 220 ohm resistors
1 x 74hc595 IC
16 x M-M wires (Male to Male jumper wires)

74HC595 Shift Register:

The shift register is a type of chip that holds what can be thought of as eight memory
locations, each of which can either be a 1 or a 0. To set each of these values on or off,
we feed in the data using the 'Data' and 'Clock' pins of the chip.

65/103

Component Introduction

The clock pin needs to receive eight pulses. At each pulse, if the data pin is high, then
a 1 gets pushed into the shift register; otherwise, a 0. When all eight pulses have
been received, enabling the 'Latch' pin copies those eight values to the latch register.
This is necessary; otherwise, the wrong LEDs would flicker as the data is being loaded
into the shift register.
The chip also has an output enable (OE) pin, which is used to enable or disable the
outputs all at once. You could attach this to a PWM-capable ZY UNOpin and use
'analogWrite' to control the brightness of the LEDs. This pin is active low, so we tie it
to GND.

Connection Diagram:

66/103

Wiring schematic :

Physical wiring diagram:

67/103

As we have eight LEDs and eight resistors to connect, there are actually quite a few
connections to be made.
It is probably easiest to put the 74HC595 chip in first, as pretty much everything else
connects to it. Put it so that the little U-shaped notch is towards the top of the
breadboard. Pin 1 of the chip is to the left of this notch.
Digital 12 from the ZY UNOgoes to pin #14 of the shift register Digital 11 from the ZY
UNO goes to pin #12 of the shift register Digital 9 from the ZY UNO goes to pin #11 of
the shift register
All but one of the outputs from the IC is on the left side of the chip. Hence, for ease
of connection, that is where the LEDs are, too.
After the chip, put the resistors in place. You need to be careful that none of the
leads of the resistors are touching each other. You should check this again before you
connect the power to your ZY UNO. If you find it difficult to arrange the resistors
without their leads touching, then it helps to shorten the leads so that they are lying
closer to the surface of the breadboard.
Next, place the LEDs on the breadboard. The longer positive LED leads must all be
towards the chip, whichever side of the breadboard they are on.
Attach the jumper leads as shown above. Do not forget the one that goes from pin 8
of the IC to the GND column of the breadboard.
Load up the sketch listed a bit later and try it out. Each LED should light in turn until
all the LEDs are on, and then they all go off and the cycle repeats.

Code:

int tDelay = 100;
int latchPin = 11; // (11) ST_CP [RCK] on 74HC595
int clockPin = 9; // (9) SH_CP [SCK] on 74HC595
int dataPin = 12; // (12) DS [S1] on 74HC595
byte leds = 0;
void updateShiftRegister()
{

digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, leds);
digitalWrite(latchPin, HIGH);

}

void setup()
{

pinMode(latchPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);

}

void loop()

68/103

{
leds = 0;
updateShiftRegister();
delay(tDelay);
for (int i = 0; i < 8; i++)
{

bitSet(leds, i);
updateShiftRegister();
delay(tDelay);

}
leds = 0;

for (int i = 8; i > 0; i--)
{

bitSet(leds, i);
updateShiftRegister();
delay(tDelay);

}
}

69/103

Lesson 15 LCD Display

Overview

In this lesson, you will learn how to wire up and use an alphanumeric LCD display.
The display has an LED backlight and can display two rows with up to 16 characters
on each row. You can see the rectangles for each character on the display and the
pixels that make up each character. The display is just white on blue and is intended
for showing text.
In this lesson, we will run the ZY UNO example program for the LCD library, but in the
next lesson, we will get our display to show the temperature, using sensors.

Component Required:

1 x ZY Uno R3
1 x LCD1602 module
1 x Potentiometer (10k)
1 x 830 tie-points Breadboard
16 x M-M wires (Male to Male jumper wires)

Component Introduction：

LCD1602：

Introduction to the pins of LCD1602:
VSS: A pin that connects to ground
VDD: A pin that connects to a +5V power supply
VO: A pin that adjust the contrast of LCD1602
RS: A register select pin that controls where in the LCD’s memory you are writing
data to. You can select either the data register, which holds what goes on the screen,
or an instruction register, which is where the LCD’s controller looks for instructions
on what to do next.
R/W: A Read/Write pin that selects reading mode or writing mode
E: An enabling pin that, when supplied with low-level energy, causes the LDC module
to execute relevant instructions.
D0-D7：Pins that read and write data
A and K: Pins that control the LED backlight

70/103

Connection Diagram:

Wiring schematic :

71/103

Physical wiring diagram:

The LCD display needs six ZY UNO pins, all set to be digital outputs. It also needs 5V
and GND connections.
There are a number of connections to be made. Lining up the display with the top of
the breadboard helps to identify its pins without too much counting, especially if
the breadboard has its rows numbered with row 1 as the top row of the board. Do
not forget, the long yellow lead that links the slider of the pot to pin 3 of the display.
The 'pot' is used to control the contrast of the display.
You may find that your display is supplied without header pins attached to it. If so,
follow the instructions in the next section.

Code:

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

void setup() {

72/103

// set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print("Hello, World!");

}

void loop() {
// set the cursor to column 0, line 1
// (note: line 1 is the second row, since counting begins with 0):
lcd.setCursor(0, 1);
// print the number of seconds since reset:
lcd.print(millis() / 1000);

}

73/103

Lesson 16 Photocell Experiment

Overview:

In this lesson, you will learn how to measure light intensity using an Analog Input.
You will build on lesson 16 and use the level of light to control the number of LEDs to
be lit.
The photocell is at the bottom of the breadboard, where the pot was above.

Component Required:

1 x ZY Uno R3
1 x 830 tie-points breadboard
3 x leds
3 x 220 ohm resistors
1 x 1k ohm resistor
1 x Photosensitive resistance
6 x M-M wires (Male to Male jumper wires)

Component Introduction

PHOTOCELL:

The photocell used is of a type called a light dependent resistor, sometimes called an
LDR. As the name suggests, these components act just like a resistor, except that the
resistance changes in response to how much light is falling on them.
This one has a resistance of about 50 kΩ in near darkness and 500 Ω in bright light.
To convert this varying value of resistance into something we can measure on an
UNO R3 board's analog input, it needs to be converted into a voltage.
The simplest way to do that is to combine it with a fixed resistor.

74/103

The resistor and photocell together behave like a pot. When the light is very bright,
then the resistance of the photocell is very low compared with the fixed value
resistor, and so it is as if the pot were turned to maximum.
When the photocell is in dull light, the resistance becomes greater than the fixed 1
kΩ resistor and it is as if the pot were being turned towards GND.
Load up the sketch given in the next section and try covering the photocell with your
finger, and then holding it near a light source.

Connection Diagram:

Wiring schematic :

75/103

Physical wiring diagram:

Code:

int ADC0 = A0;
int B = 2;
int R = 3;
int G = 4;
void setup()
{
pinMode(B, OUTPUT);
pinMode(R, OUTPUT);
pinMode(G, OUTPUT);
pinMode(ADC0, INPUT);
Serial.begin(9600);
}

void loop()
{

76/103

int reading = analogRead(ADC0);
Serial.print(reading);
delay(500);
Serial.print("\n");
if(reading>=600)
{
digitalWrite(B, HIGH);
digitalWrite(R, HIGH);
digitalWrite(G, HIGH);
}
else
{

digitalWrite(B, LOW);
digitalWrite(R, LOW);
digitalWrite(G, LOW);

}
if(reading>=180)

{
digitalWrite(B, HIGH);
digitalWrite(R, HIGH);
//digitalWrite(G, HIGH);
}
else

{
digitalWrite(B, LOW);
digitalWrite(R, LOW);
digitalWrite(G, LOW);

}
if(reading>=60)

{
digitalWrite(B, HIGH);
//digitalWrite(R, HIGH);
//digitalWrite(G, HIGH);
}
else

{
digitalWrite(B, LOW);
digitalWrite(R, LOW);
digitalWrite(G, LOW);

}

77/103

Lesson 17 DC Motors

Overview

In this lesson, you will learn how to control a small DC motor using an ZY UNO R3 and
a transistor.

Component Required:

1 x ZY Uno R3
1 x 830 tie-points breadboard
1 x L293D IC
1 x Fan blade and 3-6v motor
5 x M-M wires (Male to Male jumper wires)

L293D

This is a very useful chip. It can actually control two motors independently. We are
just using half the chip in this lesson, most of the pins on the right hand side of the
chip are for controlling a second motor.

78/103

Product Specifications:

Featuring Unitrode L293 and L293D Products Now From Texas Instruments
Wide Supply-Voltage Range: 4.5 V to 36 V
Separate Input-Logic Supply
Internal ESD Protection
Thermal Shutdown
High-Noise-Immunity Inputs
Functionally Similar to SGS L293 and SGS L293D
Output Current 1 A Per Channel (600 mA for L293D)
Peak Output Current 2 A Per Channel (1.2 A for L293D)
Output Clamp Diodes for Inductive T ransient Suppression (L293D)

Description/ordering information

The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed
to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The
L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages
from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays,
solenoids, dc and bipolar stepping motors, as well as other
high-current/high-voltage loads in positive-supply applications.
All inputs are TTL compatible. Each output is a complete totem-pole drive circuit,
with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled
in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by
3,4EN. When an enable input is high, the associated drivers are enabled, and their
outputs are active and in phase with their inputs. When the enable input is low,
those drivers are disabled, and their outputs are off and in the
high-impedance state. With the proper data inputs, each pair of drivers forms a full-H
(or bridge) reversible drive suitable for solenoid or motor applications.

79/103

1
1 16

1
0

2 15

1

M

1

4 13

M 5 12

6 11

2 3
1
0

7 10

9

1

0 M
1

I got fed up with indecipherable pinout diagrams within datasheets, so have designed
my own that I think gives more pertinent information.
There are 3 wires connected to the ZY UNO R3 , 2 wires connected to the motor,
and 1
wire connected to a battery

To use this pinout:
The left hand side deals with the first motor, the right hand side deals with a second
motor.
Yes, you can run it with only one motor connected.
ZY UNO Connections

M1 PWM - connect this to a PWM pin on the ZY UNO R3 . They're labelled on the
Uno, pin 5 is an example. Output any integer between 0 and 255, where 0 will be off,
128 is half speed and 255 is max speed.
M1 direction 0/1 and M1 direction 1/0 - Connect these two to two digital ZY UNO
pins. Output one pin as HIGH and the other pin as LOW, and the motor will spin in
one direction.
Reverse the outputs to LOW and HIGH, and the motor will spin in the other direction.

80/103

Connection Diagram:

Wiring schematic :

81/103

Physical wiring diagram:

Code:

#define ENABLE 5
#define DIRA 3
#define DIRB 4

int j=255;

void setup() {
//---set pin direction
pinMode(ENABLE,OUTPUT);
pinMode(DIRA,OUTPUT);
pinMode(DIRB,OUTPUT);
Serial.begin(9600);

}

void loop() {
//---back and forth example

Serial.println("One way, then reverse");
digitalWrite(ENABLE,HIGH); // enable on
for (int i=0;i<5;i++) {
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);

82/103

delay(500);
digitalWrite(DIRA,LOW); //reverse
digitalWrite(DIRB,HIGH);
delay(500);

}
digitalWrite(ENABLE,LOW); // disable
delay(2000);

Serial.println("fast Slow example");
//---fast/slow stop example
digitalWrite(ENABLE,HIGH); //enable on
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(3000);
digitalWrite(ENABLE,LOW); //slow stop
delay(1000);
digitalWrite(ENABLE,HIGH); //enable on
digitalWrite(DIRA,LOW); //one way
digitalWrite(DIRB,HIGH);
delay(3000);
digitalWrite(DIRA,LOW); //fast stop
delay(2000);

Serial.println("PWM full then slow");
//---PWM example, full speed then slow
analogWrite(ENABLE,255); //enable on
int j=255;
for(int i=0;i<8;i++)
{

j=j-20;
analogWrite(ENABLE,j); //enable on
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(2000);
}

/*digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(2000);
analogWrite(ENABLE,180); //half speed
delay(2000);
analogWrite(ENABLE,128); //half speed
delay(2000);
analogWrite(ENABLE,50); //half speed

83/103

delay(2000);
analogWrite(ENABLE,128); //half speed
delay(2000);
analogWrite(ENABLE,180); //half speed
delay(2000);
analogWrite(ENABLE,255); //half speed
delay(2000);
digitalWrite(ENABLE,LOW); //all done
delay(10000);*/

}

84/103

Lesson 18 A digital tube shows traffic light experiment

Overview:

After learning lesson 18, we learned DC motor. This course will use a digital tube to
display numbers

Component Required:

1 x ZY Uno R3
1 x 830 tie-points breadboard
1 x 1 Digit 7-Segment Display
20 x M-M wire (Male to Male jumper wire) 1 x Red LED
1 x Yellow LED 1 x Green LED

Component Introduction

Seven segment display

Below is the seven-segment pin diagram.

85/103

0-9 ten digits correspond with each segment are as follows (the following table
applies common cathode seven segment display device, if you are using a common
anode, the table should be replaced every 1 0 0 should all replaced by 1):

Display

digital
dp a b c d e f g

0 0 1 1 1 1 1 1 0

1 0 0 1 1 0 0 0 0

2 0 1 1 0 1 1 0 1

3 0 1 1 1 1 0 0 1

4 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1

6 0 1 0 1 1 1 1 1

7 0 1 1 1 0 0 0 0

8 0 1 1 1 1 1 1 1

9 0 1 1 1 1 0 1 1

86/103

Connection Diagram:

Wiring schematic:

87/103

Physical wiring diagram:

Code:

int a=7;
int b=6;
int c=5;
int d=11;
int e=10;
int f=8;
int g=9;

int ledG = 14;
int ledY = 15;
int ledR = 16;

//Display number 1
void digital_1(void)
{
unsigned char j;
digitalWrite(c,HIGH);//Lower the level of the digital 5 pin and light up segment c
digitalWrite(b,HIGH);//Light section b
for(j=7;j<=11;j++)//blanking
digitalWrite(j,LOW);
}
//Display number 2
void digital_2(void)

88/103

{
unsigned char j;
digitalWrite(b,HIGH);
digitalWrite(a,HIGH);
for(j=9;j<=11;j++)
digitalWrite(j,HIGH);
digitalWrite(c,LOW);
digitalWrite(f,LOW);
}
//Display number 3
void digital_3(void)
{
unsigned char j;
digitalWrite(g,HIGH);
digitalWrite(d,HIGH);
for(j=5;j<=7;j++)
digitalWrite(j,HIGH);
digitalWrite(f,LOW);
digitalWrite(e,LOW);
}

//Display number 4
void digital_4(void)
{
digitalWrite(c,HIGH);
digitalWrite(b,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(a,LOW);
digitalWrite(e,LOW);
digitalWrite(d,LOW);
}
//Display number 5
void digital_5(void)
{
unsigned char j;
for(j=7;j<=9;j++)
digitalWrite(j,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(b,LOW);
digitalWrite(e,LOW);

89/103

}
//Display number 6
void digital_6(void)
{
unsigned char j;
for(j=7;j<=11;j++)
digitalWrite(j,HIGH);
digitalWrite(c,HIGH);
digitalWrite(b,LOW);
}
//Display number 7
void digital_7(void)
{
unsigned char j;
for(j=5;j<=7;j++)
digitalWrite(j,HIGH);
for(j=8;j<=11;j++)
digitalWrite(j,LOW);
}

//Display number 8
void digital_8(void)
{
unsigned char j;
for(j=5;j<=11;j++)
digitalWrite(j,HIGH);
}
//Display number 9
void digital_9(void)
{
digitalWrite(c,HIGH);
digitalWrite(b,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(a,HIGH);
digitalWrite(e,LOW);
digitalWrite(d,HIGH);
}
//Pin setting and initialization
void setup()
{
int i;//defined variable
for(i=5;i<=16;i++)

90/103

pinMode(i,OUTPUT);//Set pins 5 ~ 16 to output mode

}

void loop()
{
while(1)
{
//red light
digitalWrite(ledR,LOW);
digitalWrite(ledY,HIGH);
digitalWrite(ledG,HIGH);

digital_9(); // Show 9
delay(1000); //Delay 1 s
digital_8(); // Show 8
delay(1000); //Delay 1 s
digital_7(); // Show 7
delay(1000); //Delay 1 s
digital_6(); // Show 6
delay(1000); //Delay 1 s
digital_5(); // Show 5
delay(1000); //Delay 1 s
digital_4(); // Show 4
delay(1000); //Delay 1 s
digital_3(); // Show 3
delay(1000); //Delay 1 s
digital_2(); // Show 2
delay(1000); //Delay 1 s
digital_1(); // Show 1
delay(1000); //Delay 1 s
//green light
digitalWrite(ledR,HIGH);
digitalWrite(ledY,HIGH);
digitalWrite(ledG,LOW);

digital_9(); // Show 9
delay(1000); //Delay 1 s
digital_8(); // Show 8
delay(1000); //Delay 1 s
digital_7(); // Show 7
delay(1000); //Delay 1 s
digital_6(); // Show 6

91/103

delay(1000); //Delay 1 s
digital_5(); // Show 5
delay(1000); //Delay 1 s
digital_4(); // Show 4
delay(1000); //Delay 1 s
digital_3(); // Show 3
delay(1000); //Delay 1 s
digital_2(); // Show 2
delay(1000); //Delay 1 s
digital_1(); // Show 1
delay(1000); //Delay 1 s
//yellow light
digitalWrite(ledR,HIGH);
digitalWrite(ledY,LOW);
digitalWrite(ledG,HIGH);
digital_3(); // Show 3
delay(1000); //Delay 1 s
digital_2(); // Show 2
delay(1000); //Delay 1 s
digital_1(); // Show 1
delay(1000); //Delay 1 s
}
}

92/103

Lesson 19 Four Digital Seven Segment Display

Overview

In this lesson, you will learn how to use a 4-digit 7-segment display.
When using 1-digit 7-segment display, please notice that if it is common anode, the
common anode pin connects to the power source; if it is common cathode, the
common cathode pin connects to the GND.
When using 4-digit 7-segment display, the common anode or common cathode pin is
used to control which digit is displayed. Even though there is only one digit working,
the principle of Persistence of Vision enables you to see all numbers displayed
because each the scanning speed is so fast that you hardly notice the intervals.

Component Required:

1 x ZY Uno R3
1 x 830 tie-points breadboard
1 x 74HC595 IC
1 x 4 Digit 7-Segment Display
4 x 220 ohm resistors
23 x M-M wires (Male to Male jumper wires)

Component Introduction

93/103

Four Digital Seven segment display

94/103

Connection Diagram:

Wiring schematic :

95/103

Physical wiring diagram:

Code:

int latch=9; //74HC595 pin 9 STCP
int clock=10; //74HC595 pin 10 SHCP
int data=8; //74HC595 pin 8 DS

unsigned char table[]=
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c
,0x39,0x5e,0x79,0x71,0x00};

void setup() {
pinMode(latch,OUTPUT);
pinMode(clock,OUTPUT);
pinMode(data,OUTPUT);

}
void Display(unsigned char num)
{

digitalWrite(latch,LOW);
shiftOut(data,clock,MSBFIRST,table[num]);
digitalWrite(latch,HIGH);

}
void loop() {

Display(1);
delay(500);

96/103

Display(2);
delay(500);
Display(3);
delay(500);
Display(4);
delay(500);
Display(5);
delay(500);
Display(6);
delay(500);
Display(7);
delay(500);
Display(8);
delay(500);
Display(9);
delay(500);
Display(10);
delay(500);
Display(11);
delay(500);
Display(12);
delay(500);
Display(13);
delay(500);
Display(14);
delay(500);
Display(15);
delay(500);

}

97/103

Lesson 20 Relay Experiment

Overview

In this course you will learn how to use relay modules.
When the input variable (excitation) becomes a specified requirement, the relay is a
component in which the amount of charge of the output circuit occurs due to a step
change of an electric appliance. The company's relay modules can handle a wide
range of other electrical components from 28V to 240V AC or DC power supplies. The
MCU can be used to achieve the goal of timing control switches. Can be used in
burglar alarm, toys, construction and other fields. A relay is an electrical control
device. It has an interaction between a control system (also called an input circuit)
and a control system (also known as an output circuit). Typically used in automatic
control circuits, it is actually performed in the current operation of the "automatic
control circuit".

Component Introduction

Component Required:

1 x ZY Uno R3
1 x 5v Relay
1 x 830 tie-points breadboard
1 x Diode rectifier (1N4007)
1 x NPN Transistor (pn2222)
1 x LED
6 x M-M wires (Male to Male jumper wires)
2 x 220 ohm resistors

98/103

Connection Diagram:

Wiring schematic :

99/103

Physical wiring diagram:

Code:

int KEY = 8;
void setup()
{
pinMode(KEY,OUTPUT);
}
void dis(int num,int delay_ms)
{

for(int i = 0;i<num;i++)
{

digitalWrite(KEY,HIGH);
delay(delay_ms);
digitalWrite(KEY,LOW);
delay(delay_ms);

}
}
void loop()
{

dis(10,800);
delay(10000);

}

100/103

Lesson 21 Analog temperature sensor

Overview

A thermistor is a type of resistor whose resistance is dependent on temperature,
more so than in standard resistors. The word is a portmanteau of thermal and
resistor. Thermistors are widely used as inrush current limiter, temperature sensors
(NTC type typically), self- resetting overcurrent protectors, and self-regulating
heating elements.

Component Introduction

Component Required:

1 x ZY Uno R3
1 x Thermistor 10K
1 x 830 tie-points breadboard
1 x 10K ohm resistors
1 x LED
4 x M-M wires (Male to Male jumper wires)
2 x 220 ohm resistors

101/103

Connection Diagram:

Wiring schematic :

102/103

Physical wiring diagram:

Code:

int LEDPin = 9;
int NTCPin = A0;
#define SERIESRESISTOR 10000
#define NOMINAL_RESISTANCE 10000
#define NOMINAL_TEMPERATURE 25
#define BCOEFFICIENT 3950

void setup()
{

pinMode(LEDPin,OUTPUT);
Serial.begin(9600);

}
void loop()
{
float ADCvalue;
float Resistance;

103/103

ADCvalue = analogRead(NTCPin);
Serial.print("Analoge ");
Serial.print(ADCvalue);
Serial.print(" = ");
//convert value to resistance
Resistance = (1023 / ADCvalue) - 1;
Resistance = SERIESRESISTOR / Resistance;
Serial.print(Resistance);
Serial.println(" Ohm");

float steinhart;
steinhart = Resistance / NOMINAL_RESISTANCE; // (R/Ro)
steinhart = log(steinhart); // ln(R/Ro)
steinhart /= BCOEFFICIENT; // 1/B * ln(R/Ro)
steinhart += 1.0 / (NOMINAL_TEMPERATURE + 273.15); // + (1/To)
steinhart = 1.0 / steinhart; // Invert
steinhart -= 273.15; // convert to C
analogWrite(LEDPin,steinhart);
Serial.print(steinhart);
Serial.println(" oC");
delay(1000);
}

	Lesson 0 Installing I
	Lesson 1 Add Libraries
	Lesson 2 Blink
	Lesson 3 Key control LED
	Lesson 4 RGB LED
	Lesson 5 Active buzzer
	Lesson 6 Passive Buzzer
	Lesson 7 Tilt Ball Switch
	Lesson 8 Ultrasonic Sensor Module
	Lesson 9 DHT11 Temperature and Humidity Sensor
	Lesson 10 Servo
	Lesson 11 IR Receiver Module
	Lesson 12 Analog Joystick Module
	Lesson 13 Stepper Motor
	Lesson 14 Eight LED with 74HC595
	Lesson 15 LCD Display
	Lesson 16 Photocell Experiment
	Lesson 17 DC Motors
	Lesson 18 A digital tube shows traffic light exper
	Lesson 19 Four Digital Seven Segment Display
	Lesson 20 Relay Experiment
	Lesson 21 Analog temperature sensor

